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Overview

This report encompasses two interlinked research projects. The first of these investigates the
potential for generating transferable models for predicting visitor arrival numbers at woodland
recreation sites across Great Britain. The second project sets out to estimate transferable
monetary assessments of the value of such woodland visits through a meta-analysis of
previous valuation studies.

Both of these projects develop novel methodologies which demonstrably improve upon
previous approaches to the issues addressed. The study of arrival numbers takes as its
underlying approach a function transfer method whereby models relating the number of
visitors to a sample of sites are estimated and then applied to predict arrivals at other sites.
Here the basic assumption is that the functional relationship between the number of arrivals
and a well specified set of predictors (such as measures of population distribution and socio-
economic profile, accessibility and travel time, substitute availability, site characteristics,
etc.), as described by the coefficients on those predictors, will hold between sites. Note that
only the coefficients are assumed to be constant, not the value of the predictors themselves. In
this manner we assume that the relationship between say substitute availability and visits is
constant, but allow for the fact that the level of substitute availability will vary between sites.

The function transfer model developed in this research explicitly addresses one of the major
empirical problems facing successful function transfer; spatial complexity between sites. The
assumption of coefficient stability is only valid for well specified models and this is unlikely
to be the case unless those models can incorporate the complex interplay between and
variation within the rich set of predictors outlined above. Conventional analyses face severe
problems in addressing this issue. For example, even the most fundamental determinants for
site visits, such as site accessibility and consequent travel time, will vary enormously between
sites. Each site has a different part of the road network serving it resulting in very different
accessibility and hence arrivals. As we have shown elsewhere, simple assumptions designed
to bypass the modelling of such spatial complexity can result in very substantial errors
(Bateman et al., 1999a). Therefore the methodology developed here directly addresses the
spatial dimension of functions transfer through application of a Geographical Information
System (GIS).

GIS provides a ready route for obtaining measures of the underlying determinants of
recreational visits including travel time and distance, travel cost, population distribution and
outset origins for potential visitors, the socio-economic characteristics of those populations,
and the spatial availability of substitutes and complements. Furthermore, these measures can
be obtained in a consistent manner for both surveyed ‘study’ sites and unsurveyed ‘policy’ or
‘target’ sites. It is this consistency,  compatibility, availability and richness of measures which
provides the quantitative cornerstone which is a vital prerequisite for successful function
transfer.

The models developed in the first part of this report are innovative not only for their use of
GIS to incorporate the spatial complexity of function transfer, but also because they combine
these methods with advanced statistical analysis techniques. Specifically models utilising the
Poisson distribution (which are highly applicable to the data which consists of counts of visits
from differing outset areas to a given set of sites) are implemented via multilevel modelling
techniques. These permit explicit incorporation of natural hierarchies in the data within the
modelling exercise. So, for example the clustering (or ‘nesting’) of visits within sites inherent
in a multi-site transferable model can be converted from a source of unexplained error to be



3

minimised to a source of variation providing insight into observed patterns of visitation. The
resultant GIS-based, multilevel, function transfer model allows the superior prediction of
woodland recreation arrivals numbers for sites distributed across Great Britain and, we would
contend, constitutes a substantial advance in function transfer research.

The second part of the research undertakes a meta-analysis of previous studies examining the
monetary value of woodland recreation visits. Here again a novel methodology is developed
utilising multilevel modelling techniques. These permit explicit incorporation of hierarchical
effects within the modelling exercise. This approach is employed to investigate a number of
natural hierarchies in estimates obtained from the valuation literature. For example, tests of
the theoretical consistency of recreational values examine whether value estimates are
significantly higher in studies conducted by differing research authors. This example
underlines the importance of this methodological development as conventional analyses
suggest significant differences in value estimates may exist between authors, whereas explicit
incorporation of natural data hierarchies within the multilevel analysis we have undertaken
shows that such differences are, in fact, not significant.

We propose that, taken together, these models of visitor arrival numbers and recreational
values represent a substantial advance upon previous research in this area. They outline a
methodology which has ready potential to be developed into a practical tool for forest
planning and management allowing the identification of optimal sites for the provision or
development of new woodland recreational opportunities.

This report is divided into two sections. In Part One we discuss the development of the
transferable models for predicting visitor arrival numbers at woodland recreation sites across
Great Britain. Part Two sets out the work we undertook to estimate transferable monetary
assessments of the value of such woodland visits through a meta-analysis of previous
valuation studies.
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Part One:
Estimating recreational arrival numbers at

British woodlands
1. INTRODUCTION

1.1 General overview

The valuation of environmental recreational resources such as woodlands, has become an
important issue in assisting policy makers to make decisions concerning the allocation of
resources (Liston-Heyes and Heyes, 1999). A common requirement for bodies charged with
managing a range of recreational sites is an understanding of the factors that influence the
choices made by the public when deciding where to visit for their recreational activities.
Typically gaining this information has involved undertaking large scale visitor surveys
(Boxall et al, 1996). However, this form of data collection is a very time consuming and
expensive process. A particular problem arises in situations where there are few visits made to
a site, either because of its remote nature or the fact that it is undeveloped. In these cases there
is little potential to gain information from surveys.

The potential to estimate models of arrivals from data gleaned from a set of surveyed sites and
transfer them to estimate visits to unsurveyed sites provides an attractive alternative to
repeated surveys. Consequently a large literature has developed in recent years to examine the
potential for such transfers (see, for example, Bergh et al., 1997; Bergland et al., 1995; Boyle
(n.d.); Boyle and Bergstrom, 1992; Brouwer et al., 1999; Desvousges et al., 1992; Downing
and Ozuna, 1996; Kirchhoff et al., 1997; Krupnick, 1993; Loomis, 1992; Loomis et al., 1995;
Smith and Kaoru, 1990; Walsh et al., 1992; Willis and Garrod, 1994; and review in Bateman
et al., 2001). However, the principal focus of this research has been upon the transferral of
value estimates rather than visitor arrival numbers. Bateman et al., (2002) characterise this
situation as a case of ‘horse and rabbit stew’ whereby the focus of research has been upon the
value of a unit of recreation (the ‘rabbit’) whereas the greater influence upon estimates of the
total value of recreational demand is exerted by the number of visitors arriving at sites (the
‘horse’). As demonstrated throughout the two parts to this research, estimates of the value of a
day’s recreation vary far less across woodlands than do estimates of the numbers of visitors to
different woodlands. Given this disparity, it seems somehow odd that research has focussed so
intensely upon transferral of values as opposed to transferral of visitor numbers and it is our
opinion that this reflects both the allure of the former task and the spatial complexity of the
latter.

Ourselves and colleagues have conducted a number of recent investigations into the
estimation of transferable functions for predicting arrivals at woodland sites (Lovett et al.,
1997; Bateman et al., 1999b; Brainard et al., 1999; 2001). The premise behind such function
transfer analyses is that the availability of data from surveys of a set of sites allows statistical
models to be developed to quantify the factors which determine visitation levels. If successful,
these models may then be applied to predict potential visitor arrivals at other, unsurveyed
sites.

As noted above, the majority of research in this area has focussed upon the estimation of
functions for transferring recreation benefit values rather than arrival numbers. Indeed for the
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purposes of clarification we can separate out benefit function transfers from arrival function
transfers (although, as discussed subsequently, both benefit values and arrival numbers may
be estimated from certain types of transferable functions).

Considering for a moment the estimation of benefit transfer functions alone, data for such
exercises may be obtained from two distinct types of valuation exercise; expressed preference
and revealed preference techniques. Expressed preference methods, such as contingent
valuation (Mitchell and Carson, 1989; Bateman and Willis, 1999), rely upon individuals’
assessments of both market and non-market site values elicited through direct survey
questioning concerning, for example, their willingness to pay for environmental goods or
resources at a site. Conversely revealed preference methods, such as the travel cost method
(Freeman, 1993), infer demand via observed behaviour. Travel cost studies elicit such
observations via surveys of visitors to recreational sites, relating visit numbers to a variety of
factors including characteristics of visitors, visits and the site.

Both expressed and revealed preference approaches have a number of advantages and
disadvantages. Advantages of expressed preference methods, such as contingent valuation,
include their ability to incorporate measures of both the use and non-use values of the
environmental good being considered and general applicability to a host of real world or
potential future decision questions. However, these methods are relatively poor at generating
data for the estimation of arrivals functions. This is because, by definition, survey respondents
find it difficult to quantify essentially subjective and even subconscious factors which impinge
upon their decision to visit a given site. For example, the influence of substitute availability
may be a significant factor in determining a visit. However, expression of this factor within
terms which can readily be incorporated in transferable arrivals models involves questions
which are inherently difficult for survey respondents to answer. Such difficulties are directly
addressed through the application of the revealed preference travel cost technique.

As typically applied, the travel cost method seeks to place a value on non-market recreational
goods by using the costs of consuming the services of the recreational asset as a proxy for
price. These costs include those associated with travel, entry fees and on-site expenditure
(Freeman, 1993; Hanley and Spash, 1994). The basic premise of the travel cost model is that
the number of visits from a locality to a recreational site will vary with the distance from that
site. As travel distance to the site increases, and thus the costs of travelling to the site
increases, the number of visits decreases. Hence it is assumed that as travel costs increase, the
net benefits derived for a given potential visitor from a visit diminish. This is captured in the
coefficient relating travel costs to visits; a coefficient which can then be used as a proxy for
the value placed on a recreational visit (Fix et al. 2000). However, importantly, when
structured appropriately the functional relationship between travel costs, other predictors and
visits also permits estimation of the number of arrivals to a site.

There are a variety of permutations of travel cost analyses. (Hufschmidt et al., 1983; Freeman,
1979; 1993; Bockstael et al., 1991; Herriges and Kling, 1999). One such is the zonal travel
cost technique which focuses upon the prediction of visit rates to a given site or set of sites
from a set of outset zones. The use of averages or other descriptive statistics to characterise
outset zones has made the method less popular in recent years as a route for estimating
recreational values. Instead benefits assessment work has focussed upon individual travel cost
methods (Freeman, 1993) and random utility models (Bockstael et al., 1991; Herriges and
Kling, 1999) which are based on the revealed preferences of individuals and are therefore
more tractable and theoretically consistent for benefits assessment work. However, this
reliance upon individual level data makes such methods less amenable for the estimation of
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transferable arrivals functions, as such data is by definition not available for unsurveyed sites.
Conversely the reliance upon area statistics inherent in the zonal method opens up the
possibility of estimating arrivals functions which are based upon information available at both
surveyed and unsurveyed sites. Data sources such as the UK census (from which measures of
socio-economic characteristics may be obtained), road network information (yielding
measures of accessibility, travel time and associated costs) and a variety of locational data
(such as digital maps providing information on the location of potential substitutes) are
available as national coverages. If functions drawing upon such data can be demonstrated to
yield reliable estimates of arrivals at surveyed sites they, in principle, should be readily
transferable to other, unsurveyed locations. Such promise has rekindled interest in the
application of zonal travel cost models for function transfer purposes (Loomis et al., 1995).

The full range of information necessary for full and complete function transfer is provided
within a transferable demand function such as that detailed in Equation {1}.  This links the
number of visits to a site to the time and distance cost of those visits (thereby raising the
possibility of simultaneous transferral of benefits value estimates across sites), and other
predictors including the type and quality of facilities at the recreational site, the availability
and type of substitutes, socio-economic characteristics of the population and other explanatory
variables.

Equation {1}:

Visits = f (Travel time, SocEcon, Quality, Subs, X )
� � � � � �

Number of
visits to the
site under

consideration.
Expressed as a

visit rate in
zonal models

Disutility of a
visit, e.g.

travel time.
May be

reformulated
as travel cost
to permit the
estimation of

monetary
recreational

values

Socio-
economic

determinants
of visits

(e.g. family
structure,

social class,
etc.)

Type an
quality of
facilities

provided at the
site under

consideration

Availability
of a set of
substitute

sites.

A matrix of
other

explanatory
variables

Previous criticisms of travel cost analyses have included the difficulty in obtaining accurate
information on several of the variables defined in Equation {1}. Measurement issues arise
concerning the accurate assessment of visitor outset locations, the distances travelled and
travel time taken for visitors to reach sites, and travel times to potential substitute amenities.
The spatial complexity inherent in many of these issues has resulted in a number of studies
adopting simplifying assumptions to obtain basic measures such as travel time (e.g., Rosenthal
et al., 1986; Mendelsohn et al., 1992); assumptions which have been shown to yield substantial
errors in recreational benefit estimates (Bateman et al., 1999a). However, recent advances in
Geographical Information Systems (GIS) technology have provided a superior foundation for
tackling some of these data requirements (Brainard et al, 1999, 2001). In particular, GIS offers
the technology to help resolve some of the spatial and data-handling problems associated with
travel cost and function transfer, whilst facilitating several methodological improvements.

The research described in this part of the report concerns the application of a GIS-based zonal
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function transfer model to the estimation of recreational visitor numbers at a specific set of
open-access, informal recreation sites. The model is constructed and calibrated by the use of
data from the visitor surveys, and then applied to unsurveyed sites where there is no direct
survey information available. The overall objective of the project has been to develop a model
to predict informal recreation use at target sites, taking account of competing recreation sites,
the accessibility and quality of the resource, and the characteristics of local populations.

The empirical focus of this research concerns the estimation of recreational visitor numbers at
a sample of Forestry Commission woodlands across Great Britain. A significant complication
concerning this application arose from the fact that the available data is in the form of
interviews gathered from surveys which were conducted at short periods during the year and
with relatively sparse information concerning annual arrival numbers. Furthermore these
surveys are mostly concentrated during summer months and, as a consequence of this, only
imperfect information exists regarding the distribution of visits across the year. This makes
the aggregation of findings up to an annual basis problematic. To reduce the promulgation of
errors it was decided that aggregation to an annual basis should occur at the end rather than
outset of the modelling exercise. Consequently the empirical focus rests initially upon the
prediction of the numbers interviewed at any one site during a standardised survey period,
which in the case was set to be a 24 hour day. This standardisation for time allowed for
variations in survey effort between sites to be controlled for. Aggregation of visitor estimates
up to an annual basis is considered once the modelling exercise is complete.

The background to this particular application is presented in the following sub-section while a
detailed description of the development of the methodology is given in Section 2. Section 3
presents details of the various models estimated in the course of this research while Section 4
concludes this part of the report (discussion of our meta-analysis of woodland recreation
values being given in the second, concluding part of the report).

1.2 Background to the empirical analysis: The Forestry Commission

The Forestry Commission of Great Britain is a government department, which through its
agency Forest Enterprise is responsible for the protection and expansion of more than 860,000
hectares of Britain’s forests and woodlands (Forestry Commission, 2001). The aims of the
Forestry Commission are to produce environmental, economic and social benefits from the
forests it manages. Achieving these objectives involves balancing timber production with the
wider benefits from recreational and environmental programmes. A key objective of the
Forestry Commission is the requirement to develop opportunities for woodland recreation and
to increase public understanding and community participation in forestry.

Forest and woodland cover varies from country to country in Britain. England’s woodland
cover currently remains at 8% of its land area. Around three-quarters of this is privately
owned, with the remaining quarter being managed by the Forestry Commission. Scotland’s
woodland cover currently stands at 1.2 million hectares, 17% of its land area, of which around
40% is managed by the Forestry Commission. Half of Britain’s forest and woodland is in
Scotland and over 17,000 hectares of trees are being planted in Scotland each year. In total,
forests and woodlands make up more than 14% of the land area in Wales, comprising over
280,000 hectares, 40% of which is managed by the Forestry Commission (Forestry
Commission, 2001). Although forests and woodlands are managed for their timber
production, this activity has a lower strategic importance to the nation than has been the case
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in the past. Despite this, UK timber production is still increasing rapidly and is expected to do
so over the next 15-20 years. In addition to their role in producing timber, the recreational
uses of forests are becoming a much more significant aspect of woodland management. This
is largely due to the value of recreation being more fully recognised than in the past.

Over 70% of all adults have visited British forests in the last few years, making around 350
million annual trips to woods (Forestry Commission, 2001). Woodlands provide a wide range
of recreational pursuits including walking, cycling, horse riding, orienteering, camping,
fishing and bird watching. Major public forests also provide a range of key facilities including
car parks, forest drives, picnic sites, camping sites, holiday cabins, marked trails, cycle ways,
horse riding routes, maps and information centres. In general, the Forestry Commission
encourages public access to the forests and woodlands it manages and also encourages private
woodland owners to manage their forests for public access by providing grants to help pay for
activities.

2. METHODOLOGY

This section describes the methodology used to generate the range of variables required in
function transfer analysis, as outlined in equation {1} above. The Arc/Info GIS package was
used to calculate the spatial data required for use in the zonal travel cost models presented
here. The initial work involved the Georeferencing of visitor survey postcodes using the
Central Postcode Directory (CPD). A method was developed to allocate visitors to outset
zones and the GIS was used to calculate travel time from each outset zone to the recreational
sites. Various data sources including the satellite-produced Institute of Terrestrial Ecology UK
Land Cover Database and Bartholomew’s digital map database were employed to identify
potential substitute resources that could be visited by the residents of each outset zone, and
their accessibility was then estimated using trip modelling functions. These results were
combined with demographic characteristics of populations, obtained from the 1991 National
Census, so that the influence of social and economic factors such as levels of unemployment,
social class, age and urbanisation on visitor recreation demand could be determined.

2.1 Georeferencing of woodland sites and visitor outset origins.

Responses from the 1996, 1997 and 1998 visitor surveys, consisting of data collected at 40
sites across Great Britain, were provided by the Forestry Commission and used in the models
presented below. It is important to note that, although the surveys were undertaken at a wider
range of sites, only those for which information on the provision of services (such as forest
trails and a visitor centre) could be provided were included in the models developed here.
Data for sites not meeting this criterion were discarded. The questionnaire used in this work is
available from the Commission who also selected the survey sites. Each site had one
interviewer, who interviewed on a continuous survey basis such that when one interview was
completed the next individual passing was then interviewed. For groups of two or more
people, one person was selected to be interviewed. Individuals or groups not interviewed were
recorded by the interviewer.



9



10

Table 1 lists the sites for which survey information was provided. These sites are mapped in
Figure 1.

Site
No.

Site Name Forest District and Country

3 Afan Argoed Coed y Cymoed, Wales
6 Alice Holt South East England
8 Back O Bennachie Buchan, Scotland
9 Beechenhurst Forest of Dean, England

14 Black Rocks Sherwood and Lincolnshire, England
15 Blackwater New Forest, England
17 Blidworth Woods Sherwood and Lincolnshire, England
18 Bolderwood New Forest, England
20 Bourne Wood Northants, England
33 Chopwell Kielder, England
34 Christchurch Forest of Dean, England
40 Countesswells Kincardine, Scotland
43 Cycle Centre Forest of Dean, England
44 Dalby North York Moors, England
46 Delamere West Midlands, England
49 Dibden New Forest, England
51 Donview Buchan, Scotland
61 Garwnant Coed y Cymoed, Wales
66 Glentrool Newton Steward, Scotland
68 Grizedale Lakes, England
72 Hamsterley Kielder, England
80 Kielder Kielder, England
83 Kings Wood South East England
84 Kirkhill Kincardine, Scotland
86 Kylerhea Fort Augustus, Scotland
95 Mabie Ae, Scotland

111 Queens View Tay, Scotland
117 Salcey Northants, England
119 Sherwood Pines Sherwood and Lincolnshire, England
121 Simonside Hills Kielder, England
126 Symonds Yat Forest of Dean, England
128 Thetford High Lodge East Anglia, England
129 Thieves Wood Sherwood, England
130 Thrunton Woods Kielder, England
134 Tyrebagger Kincardine, Scotland
137 Waters Copse New Forest, England
141 Wendover South East England
143 Westonbirt Arboretum Westonbirt Arboretum, England
147 Willingham Woods Sherwood and Lincolnshire, England
153 Wyre West Midlands, England

  Table 1: Site Location Names, Forest District and Country
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Figure 1: Survey sites used in this analysis
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Table 2 shows the number of interviews conducted at each site. This number is subdivided
into  day-trippers and holidaymakers, based upon individuals’ responses to Question 7 of the
survey instrument (“Have you travelled from home today?”). In total 13,198 visitor records
were analysed. Table 2 also details the survey effort expended at each site as measured by
survey hours during which interviewing took place This is an important determinant of the
number of interviews completed at each site and subsequent visitor predictions are adjusted
for this factor.

Numbers of Visitor SurveyedSite
No.

Site Name
Total Visitors Day Visitors Holiday

Visitors

Survey Effort
(Hours)

3 Afan Argoed 458 381 76 157.0
6 Alice Holt 217 209 6 82.0
8 Back O Bennachie 100 92 8 69.0
9 Beechenhurst 128 84 43 34.0

14 Black Rocks 161 123 38 72.0
15 Blackwater 179 82 93 35.0
17 Blidworth Woods 216 211 2 106.0
18 Bolderwood 343 148 194 58.0
20 Bourne Wood 211 200 11 59.5
33 Chopwell 125 123 2 31.0
34 Christchurch 132 26 104 24.0
40 Countesswells 212 209 3 64.0
43 Cycle Centre 222 154 67 88.0
44 Dalby 305 157 148 72.0
46 Delamere 684 264 6 153.0
49 Dibden 215 206 9 89.0
51 Donview 144 126 18 66.0
61 Garwnant 358 274 83 80.5
66 Glentrool 321 114 205 100.0
68 Grizedale 265 68 197 51.0
72 Hamsterley 160 119 40 52.0
80 Kielder 104 38 64 26.5
83 Kings Wood 102 95 7 72.0
84 Kirkhill 207 197 10 107.0
86 Kylerhea 210 9 200 95.0
95 Mabie 686 355 315 108.0

111 Queens View 270 41 228 96.0
117 Salcey 196 185 9 54.0
119 Sherwood Pines 680 517 163 208.5
121 Simonside Hills 136 98 37 45.5
126 Symonds Yat 255 103 152 66.0
128 Thetford High Lodge 687 535 149 148.5
129 Thieves Wood 307 304 2 108.0
130 Thrunton Woods 142 89 52 48.0
134 Tyrebagger 149 139 9 71.0
137 Waters Copse 172 75 97 86.5
141 Wendover 117 112 5 42.0
143 Westonbirt Ab 440 349 86 44.5
147 Willingham Woods 176 163 12 124.0
153 Wyre 670 567 101 130.5

Table 2: Surveyed visitors, by type, at each site and site survey effort
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The zonal basis of the function transfer models employed in this research meant that the key
piece of information underpinning all analysis was accurate determinantion of the visitors’
home  outset location. This provides the reference point for identification of the explanatory
variables specified in Equation {1} as relevant to a particular visitor. It is important to note
that, for both day visitor and holiday maker models, measures are taken from the home
location rather than any temporary address (e.g. a hotel or guesthouse). This is because, in the
case of holidaymakers, no information was available on the location of their holiday
residence. A consequence of this was that our analysis was unable to differentiate the factors
that may determine choice of region within which to take a holiday from those which
influence the locations visited each day during that vacation period. There is certainly
potential for future work to be undertaken to determine the role of the explanatory variables
analysed in this work in influencing these two sets of choices. However, this would require an
extension of the survey questionnaire so as to obtain information on the temporary residence
of holidaymakers. Although many of the day trippers in the sample will have set out from
their homes, some may have also travelled to Forestry Commission sites from temporary
addresses. Nevertheless, such locations would not provide an accurate description of the
accessibility, substitute availability, socio-economic, and other variables which are pertinent
to the visitor. If all sites attract a similar proportion of visitors from holiday as opposed to
home outset locations then a model which does not distinguish between the two may prove
suitable for general transfer purposes. However, such an assumption is unlikely to hold across
a study area as large and diverse and Great Britain. Therefore our analysis makes allowance
for the impact of such variation by estimating three types of model:

(i) undifferentiated all visitor models
(ii) models for only those visitors who set out from their home address (Day visitor

models)
(iii) models for those setting out from temporary addresses (Holiday visitor models)

Visitors’ home address locations were identified as follows. Interviewees were asked to state
their home postcode. These were related to Ordnance Survey grid coordinates through
interrogation of the 1995 release of the Central Postcode Directory (CPD) via the  MIMAS
system at the University of Manchester. A postcode covers a group of approximately 25
houses and the CPD provides a grid reference to a resolution of 100m of the location of the
first delivery point in each postcode (Raper et al, 1992). It is important to recognise that rural
postcodes may cover a large area and hence their grid references may not have such spatial
precision as an urban postcode which, due to higher housing densities, will generally reference
a much smaller area. However, postcoded grid references are widely used and, given the
distances involved, are acceptable for this research. After primary interrogation with the CPD,
those records which contained a postcode that could not be matched with a record in the
database were manually checked. Where possible, typographical errors, such as the use of ‘O’
rather than ‘0’ were corrected, and the records were re-interrogated. In total 2336 records did
not contain any details of a postcode or contained an untraceable postcode, and hence were
omitted from further analysis, as the presence of a valid postcode is a key requirement for
travel cost methodology. This has left a valid dataset of 10,862 visitor records. The residential
location of these visitors is mapped in Figure 2.
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Figure 2: Visitor outset locations
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Table 3 shows the ratio of the original survey responses provided to those with a valid
postcode for each Forestry Commission site. All sites had some invalid postcode responses
which were reasonably evenly, with the ratios of valid to original numbers being between 0.39
and 0.99 and the average ratio being 0.82. Six sites (Beechenhurst, Black Rocks, Hamsterley,
Kings Wood, Kylerhea and Willingham Woods) had a ratio below 0.60, and hence had a
substantial number of visitor surveys which could not be used in this research. The
performance of these sites in the statistical models that were developed was examined closely,
although we have no reason to believe that the missing visitor characteristics were not
representative of those for which information was available.

Site ID
No

Site Name Original
Totals

Valid
Totals

Ratio
Valid:Original

3 Afan Argoed 483 458 0.95
6 Alice Holt 254 217 0.85
8 Back O Bennachie 112 100 0.89
9 Beechenhurst 219 128 0.58

14 Black Rocks 276 161 0.58
15 Blackwater 257 179 0.70
17 Blidworth Woods 317 216 0.68
18 Bolderwood 403 343 0.85
20 Bourne Wood 225 211 0.94
33 Chopwell 145 125 0.86
34 Christchurch 156 132 0.85
40 Countesswells 236 212 0.90
43 Cycle Centre 336 222 0.66
44 Dalby 323 305 0.94
46 Delamere 718 684 0.95
49 Dibden 239 215 0.90
51 Donview 161 144 0.89
61 Garwnant 395 358 0.91
66 Glentrool 434 321 0.74
68 Grizedale 310 265 0.85
72 Hamsterley 336 160 0.48
80 Kielder 167 104 0.62
83 Kings Wood 173 102 0.59
84 Kirkhill 230 207 0.90
86 Kylerhea 325 210 0.65
95 Mabie 748 686 0.92

111 Queens View 348 270 0.78
117 Salcey 225 196 0.87
119 Sherwood Pines 722 680 0.94
121 Simonside Hills 138 136 0.99
126 Symonds Yat 354 255 0.72
128 Thetford High Lodge 731 687 0.94
129 Thieves Wood 348 307 0.88
130 Thrunton Woods 147 142 0.97
134 Tyrebagger 169 149 0.88
137 Waters Copse 217 172 0.79
141 Wendover 139 117 0.84
143 Westonbirt Arboretum 481 440 0.91
147 Willingham Woods 446 176 0.39
153 Wyre 755 670 0.89

Table 3: Ratio of Original to Valid Records for Forestry Commission Dataset
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2.2 Site characteristics

It is important to consider information on the characteristics of each Forestry Commission
site, as the facilities present may influence both the number and type of visitors attending.
Whilst is this undoubtedly the general nature of a woodland environment that attracts visitors
to forests, photographs in Figures 3 to 8 illustrate the diversity of features provided at
woodland locations. For example, the small information board at Blidworth Woods in
Nottinghamshire is shown in Figure 3 and indicates the presence of signposted walks. This is
typical of the type of facility available at small sites. In comparison, a larger Forestry
Commission site is likely to offer the range of facilities on offer at Sherwood Pines, also in
Nottinghamshire, shown in Figure 4. This site offers cycle paths, a cycle hire centre, café,
adventure park and car park, all clearly signposted. Figure 5 shows one of the cycle trails at
Sherwood Pines, a feature of many woodland sites. Figures 6 to 8 contain photographs taken
at Wendover Woods in Southeast England. They illustrate the types of facilities available at
many of the woodland sites in this dataset. Figure 6 and 7 are typical of the type of children’s
play facilities available at many of the Forestry Commission sites introduced to encourage
families to visit woodlands. Figure 8 illustrates a typical walking area which many visitors
look for when visiting woods and forests.

Figure 3: Blidworth Woods Information Board
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Figure 4: Sherwood Pines Information Board

Figure 5: Sherwood Pines Cycle Trials
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Figure 6: Wendover Woods Children’s Play Area

Figure 7: Wendover Woods Children’s Play Area and Cycle Path
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 Figure 8: Wendover Woods Cycle Route and Walk

The variety of site characteristics illustrated in the Figures 3 to 8 may influence the number of
visitor numbers at woodland sites. For example, the number of visits to a woodland site may
be related to the car parking capacity at that site. To address this issue, a list of potential
woodland facilities and quality attributes was developed in cooperation with the Forestry
Commission who then supplied corresponding data for all sites considered in the analysis.
Table 4 illustrates the list of characteristics supplied.

Table 4: Forestry
Commission Site
Characteristics
Checklist

Forestry Commission Site Characteristics
Tick if Present

Car park
Picnic site
Forest walk
Cycle trail
Horse riding route
Orienteering course
Children’s play facilities
Forest drive
Viewpoint
Hides
Camping/caravan site
Fishing allowed
Water feature, e.g. lake, river
Bothies
Visitor centre
Interpretation point
Café
Shop
Cycle hire
Forest classroom
Toilets
Disabled toilet
Disabled access to shop/cafe
Disabled walks
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2.3 Delineation of outset zones for calculation of visitation rates

 Zonal travel cost models work by modelling visitor rates. Hence there is a requirement to
delineate defined population catchments or outset zones, from which visitor rates may be
calculated. One possibility would have been to calculate a visitor rate for each electoral ward
in Great Britain. There are approximately 8,985 electoral wards in England and Wales and
1,158 in Scotland (Denham, 1993), each covering an average population of just over 5000.
However, a comparison of the ward boundaries with the distribution of visitor origins
indicated that this methodology would be problematic because the majority of wards would
house no visitors to any given site. For example, Figure 9 shows the distribution of visits to
the Forestry Commission site at Salcey. Here, 196 valid visitor surveys were completed with
visits originating from just 79 different wards. Hence around 10,000 wards provided no
visitors in this case. Adopting such a classification is likely to lead to estimation problems
even for a count data approach such as the Poisson methodology discussed in the overview of
this report. This is because a large number of zero visitor rates in the model could introduce
problems associated with the presence of extra-Poisson variance. This occurs when the
dependent variable shows a strong degree of right skew that is associated with an abnormally
high number of low values in its distribution. As a solution, Local Authority Districts, of
which there as 453 in Great Britain, were chosen as the units from which to delineate outset
zones. Districts are large enough to each provide an adequate number of visitor arrivals at
sites, and hence avoid the problems of extra-Poisson variance, whilst they are still small
enough to preserve an acceptable amount of homogeneity of population characteristics within
their boundaries.

 

 Figure 9: Visitors to the Forestry Commission site at Salcey
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2.4 Calculation of travel times to sites

As indicated in Equation {1} a key factor influencing the number of visitors to a site is some
measure of the disutility of making visits to that site. In valuation studies this is typically taken
as an inferred estimate of the travel cost incurred by the visitor. However, Randell (1994)
notes, in a key criticism of the validity of such values, that visitors themselves do not
explicitly observe this travel cost estimate and therefore are not necessarily reacting to it in the
way implicitly assumed by travel cost estimates of consumer surplus. Partly in response to this
criticism (and partly because of previous experience) it was decided to measure the disutility
of visits via the travel time required to reach sites. Unlike inferred travel cost this variable is
directly experienced by visitors and can therefore reasonably be assumed to impinge upon
their journey decisions.

The calculation of travel times from the outset zone of residents to the site at which they were
surveyed was undertaken using the GIS. This analysis used a digital version of the UK road
network within which each road section was coded according to the estimated amount of time
a vehicle travelling at a typical speed would take to traverse it. A simulation was developed in
Arc-Info that predicted visitor routes, and estimated the associated travel distances and times.

Although the population is, of course, distributed in a non-continuous fashion throughout each
district, it was necessary to estimate just a single travel time measure for each outset zone to
each site. Generally such measures are taken from the centroid, or geographical centre point,
of each zone. However, districts are quite large and the centroid is not necessarily
representative to the location of most of the population. Hence, a population weighting
methodology was developed1. Firstly ward centroids were chosen as the base point from
which to measure travel times. For each electoral ward, population centroid data was
downloaded from MIMAS. These centroids had been generated based on the work of Martin
and Bracken (1991). This provided an easting and northing grid reference for each ward that
corresponded to the average location of the population of that ward. The calculation of travel
times from the centroids of all wards to all sites was undertaken through GIS using the
methodology described below. Following the work of Brainard et al., (1997) a simulation was
developed in Arc/Info that predicted visitor routes, and estimated the associated travel times.
This analysis used Bartholomew’s digital version of the UK road network obtained from
MIMAS, an extract from which is illustrated in Figure 10. The travel time value obtained for
each ward was then grossed up to the district level by, rather then simply taking an average
value, estimating a weighted average for each district, where the weighting factor was set to
be the population of the ward. This had the effect of correcting for geographical variations in
the location of populations within the district.

Each section of the road network was coded according to the estimated amount of time a car
travelling at a typical speed would take to traverse it. Roads of all classes were included and
typical speeds for each class of road were calculated using information from Department of
Transport publications (DoT 1993) supplemented by research undertaken by Brainard et al.
(1996) who empirically compared journey times along 31 known routes with those generated
using the DoT data. Roads were classified according to both class and type of area they passed
through since speeds in urban areas are generally slower than over the same class of road in
rural areas. The final speeds used for this research are shown in Table 5.

                                                          
1  Bateman et al., (1999a) contrast travel cost measures of recreation value based upon both population weighted
and geographical centroids
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Figure 10: An Example of the Road Network Showing an Area of East Midlands and
Southeast England
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Average Road Speed (mph)Road Type
Rural Urban

Minor Road 14 11
B-Road Single Carriageway 24 12
B-Road Dual Carriageway 36 18
A-Road Single Carriageway 32 18
A-Road Single Carriageway Trunk Road 45 25
A-Road Dual Carriageway 50 25
A-Road Dual Carriageway Trunk Road 54 28
Motorway 63 35

Table 5: Road Classes and Speeds Adopted for this Analysis

A digitised road network only represents the centre lines of roads and, of course, most
postcodes do not fall exactly on this road centre line. Hence a method to assign them to a
point on the road network was required. The original road network was produced in vector
format (point and line data) this needed to be converted to a raster (an image that has been
sub-divided into regular tiles to represent a grid surface) to enable those postcodes that did not
fall directly on a road to be analysed. Hence the road network with corresponding travel
speeds was then converted into an ‘impedance surface’ within the GIS.

An impedance surface describes the travel effort (measured here in terms of time) associated
with moving through any particular grid cell. As such it can be used to calculate the total time
taken to move from any one location to another. The value of each cell was set to represent the
time-per-unit distance of passing through the cell. The road network was converted to a raster
surface of 500 * 500 m cells, the smallest size deemed to be manageable in terms of data
storage for an area the size of the United Kingdom. This process left many empty areas
between roads which were not assigned an impedance value. These areas were assigned
values associated with increasing distance from the road network. Empty cells within 1500m
of the known road network were filled with values of their nearest neighbours. Any cells still
empty after this step were filled by incrementing the nearest cell values by 7 minutes. This
was because it was assumed that visitors would walk to the nearest cell with an impedance
value and 7 minutes is the assumed typical walking speed to traverse 500m (Brainard et al.,
1997). Hence every cell on the rasterised surface contained an impedance value related to the
time taken to traverse that cell. An extract from the derived impedance surface is illustrated in
Figure 11.

The impedance surface was then used to determine the accumulated travel time between ward
centroids and Forestry Commission sites, by using the Arc/Info cost allocation command. This
cost command calculates the travel time associated with moving from one cell to another from
a starting point (in this case the centroid) to a finishing point (in this case a site).
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Figure 11: Section of the Impedance Surface in Eastern England

The output of this cost command, for the site at Salcey in Northamptonshire, is shown in
Figure 12. A concentric pattern with prominent, irregular extensions coinciding with faster
major roads is evident. Each cell on this image represents the estimated amount of time it
would take to drive from that location to Salcey, assuming the fastest route was taken. It was
these values that were initially assigned to ward centroids. This assignment was implemented
by the development of a GIS routine that read off the travel time value from the cell that was
spatially concurrent with each centroid, and assigned this value to each ward. The ward values
were then grossed up to district level in the manner described previously.

The use of GIS in this manner enabled the calculation of travel time based on assumed routes
from each ward. However, this procedure does have some limitations. Firstly it was assumed
that vehicles would travel at average speeds over each road type, but in reality this will be
affected by factors such as rush hour traffic, the time of day and length of journey.
Furthermore this process cannot account for ‘meanderers’, those people who enjoy travelling
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and include this as part of their enjoyment of a visit. These individuals may not take the most
direct or fastest route to the site being visited. However, although individual travel time may
vary, Bateman et al., (1996) show a very strong correspondence between GIS generated travel
times and those reported by woodland visitors interviewed in an on-site survey and we are
confident, as borne out by the results of the models described below, that this indicator
provides a highly accurate measure of accessibility for the vast majority of visitors.

.

Figure 12: Estimated Travel Time Bands (in Minutes) for Salcey Site (Insert Shows Location
of Site and Visitor Outset Locations)
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2.5 Calculation of Travel Times to Substitute Attractions

2.5.1 Substitute Choice

In addition to the consideration of travel times to each site from outset zones, the existence of
substitute attractions may influence the number of visitors to woodland locations. The
availability of substitute attractions has often been ignored in travel cost studies (Willis and
Benson, 1988). However, their presence may be an important factor in determining visitor
rates.

The nature of the substitute relationship may be complex. Generally analyses consider
substitutes at a micro level where they may act to draw visitors away from a given site to
alternative recreation opportunities. However, at a more macro level the presence of a
concentration of substitutes may draw people to an area (especially holidaymakers who by
definition have greater discretion about their choices than do day-trippers). Hence, our
analysis considers both a wide range of substitutes and a number of spatial scales in the
preparation of substitution  accessibility indicators for each outset zone.

Substitute attractions cover a wide and complex array of activities and it would not be
possible to consider all of them in a single study. Consequently some key attractions, such as,
rivers, beaches and National Parks were selected that were felt to offer similar or
complementary recreational experiences to woodlands. A further series of amenities were also
selected as being representative of developed attractions, such as, wildlife parks, theme parks
and National Trust properties. Towns and cities contain numerous different types of attraction,
hence large towns and cities were included as substitutes so as to provide a surrogate indicator
for some of the attractions found within them but were not directly measured by us, such as
cinemas, shopping centres and sports centres. Substitutes for which accessibility indicators
were produced are outlined in Table 6

Countryside/Natural Attractions Developed Attractions
Main Rivers Large Towns and Cities
Woodlands Zoos and Wildlife Parks
Forest Parks Theme Parks
Heathland National Trust Properties
Sandy Beaches Historic Houses
Inland Waterways and Canals
Coastal Areas
Scenic Areas
National Parks

Table 6: Substitute Types for which Measures of Accessibility were Calculated

A wide range of data sources were employed to identify potential substitutes. These are
discussed in some detail in sections 2.5.1.1 to 2.5.1.5 below.

2.5.1.1 The Institute of Terrestrial Ecology
The Institute of Terrestrial Ecology 1990 Land Cover Map of Great Britain contains 26 land
cover types at an output resolution of 25 m resolution cells. This dataset has been derived
from the classification of images provided by the Landsat-5 Thematic Mapper satellite.
Classes in the land cover types identified in this map include such land covers as woodland,
heathland, agricultural land and inland water. This data source was interrogated in Arc/Info
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and all cells containing a given land cover code were identified and used to create separate
new GIS layers that could be employed in subsequent accessibility analysis.

2.5.1.2 British Waterways
A digital representation of locations of all British Waterway features (including recognised
recreation access points) was provided by the organisation in vector format. This was used to
estimate the accessibility of British Waterways canalside facilities to outset zones.

2.5.1.3 Bartholomew’s Digital Database
The Bartholomew’s 1:250,000 Digital Database for Great Britain was used to identify the
location of main rivers, woodlands, forest parks, heathland, sandy beaches, scenic areas,
National Parks, coastline, urban areas, historic houses, theme parks, zoos, wildlife parks and
National Trust properties. This data source is a vector dataset digitised from 1:250,000 paper
maps. However, when checking for completeness of feature representation some facilities,
such as certain theme parks, zoos and wildlife parks, were found to be missing. Hence the
www.daysoutuk.com internet site was used to obtain the postcode of these missing features.
Grid references of these features were subsequently obtained from the Central Postcode
Directory, and these were used to update the relevant GIS layers with the missing substitutes.
The postcode locations of a number of wildlife parks and zoos not included in the
Bartholomew’s coverages were not found on the daysout site. These were hence obtained
from other published sources such as International Zoo Yearbook (Olney and Fisken, 1998)
and the Good Zoo Guide (Ironmonger, 1992).

2.5.1.4 Other Published Sources

The National Parks coverage was based on designated parks but there are officially no
National Parks in Scotland. However, there are areas of Scotland with the same characteristics
as National Parks and thereby these constitute similar substitute attractions. The advice of the
Scottish Council for National Parks and the former Countryside Commission for Scotland was
taken which led to the identification of six areas for National Park equivalent designation.
These were: The Cullins of Skye, Assynt-Colgach, Wester Ross, Cairngorms, Loch Lomond
and The Trossachs (Sharpley, 1993). The boundaries of these areas were manually digitised
from paper maps and were added to other designated National Parks throughout England and
Wales to yield a complete GIS layer for Great Britain.

2.5.2 Calculation of Area Weighted Travel Time Values for Substitutes
For those substitutes comprising areas rather than linear features, such as woodland, lakes and
scenic areas, both point and area weighted accessibility measures were derived. While the
former treat the substitute as a single location, the latter allow for the fact that the larger the
area of the substitute is, the more accessible it may be. For example, in the calculation of point
based measures described above, travel times to the closest feature that were independent of
feature size were assigned to outset locations. Hence travel times to patches of wood just
1km2 in size were assigned the same precedence as those to a large afforested area such as
Thetford Forest. These variations in feature size may be important influences on the likely
number of visitors attending sites. Hence, for the purposes of comparison with the other
substitute accessibility measures, weighted estimates were calculated as an alternative index
of travel time accessibility.

The procedure developed for defining area weighted accessibility measures is illustrated using
the woodland coverage as an example. The original woodland GIS layer (from the 1990 Land
Cover Map) contained all woodland of all sizes. This was used to select woodland based on
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area size which was categorised according to tersiles (three equal parts) of area. Four
woodland layers were produced to represent small, medium, large and all woodlands.
Illustrations for East Anglia are shown in  Figure 13.

     

      

Figure 13: Woodland – All, Small, Medium and Large Woodland Areas for an Example Area
in East Anglia
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A surface of estimated vehicle travel times was created for each small, medium and large
woodland coverage, using the same methodology as described above. This procedure
produced the raster surfaces depicted in Figure 14  which show the travel time estimates
produced for small, medium and large woodlands respectively.

   

Figure 14: Time Bands – Small, Medium and Large Woodland for an Example Area in East
Anglia
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A gravity model was then developed to weight travel time to the different sized areas of
woodland. The mean size of small, medium and large woodland polygons was extracted and
the ratio of each mean to total area calculated as follows:

Small woodland mean: 314961.22m2

Medium woodland mean: 733097.60 m2

Large woodland mean: 5606223.70 m2

Total woodland area:  6654282.50 m2

Ratio of small woodland mean/total woodland: 0.05

Ratio of medium woodland/total woodland: 0.11

Ratio of large woodland/total woodland: 0.84

The calculated ratios were used as weighting values to describe the presence of each category
of woodland within possible visitors perceptions of substitute availability. Area weighed
substitute accessibility coverages were created for each of the small, medium and large
woodland categories by multiplying each travel time accessibility coverage by its weighting
value. This produced a set of ‘score values’ which are higher for larger as opposed to smaller
woodlands thus allowing for a greater impact of the former upon substitute availability
perceptions.

These values were further modified to place proportionally greater weight upon substitute
features which were proportionally more proximal to visitor outset zone locations. This
modification was achieved by dividing the weighted accessibility scores by the square of
travel time from each outset origin (previous research by Bateman et al., (2002) having
suggested that a squared power produced a good fit to observed visitor patterns). Figure 15
illustrates an example of the output from this procedure as applied to the large woodland
category for East Anglia. The final area and proximity weighted substitutes accessibility
surfaces were interrogated using an Arc/Info macro and the index values assigned to every
ward level outset zone. Whilst the values on Figure 15 are in minutes, the weighting
procedure means that they are best viewed as an index of accessibility as opposed to actual
estimated travel times. These estimates were assigned to outset zones using the same ward
based population weighting methodology applied to the generation of travel to site measures
in Section 2.4 above.
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Figure 15: Area and proximity weighted substitutes accessibility surface for large woodlands
in East Anglia

2.5.2 Travel Times To Other Substitutes

The methodologies described above were also used to generate substitute accessibility
measures from each outset zone to all of the substitutes specified in Table 6. For those
substitutes that were area based, both weighted and un-weighted indicators were calculated.
For point based substitutes, where no weighting factor was available, unweighted indicators
were calculated. The results of this procedure are exemplified by Figures 16 and 17 which
depict area and proximity weighted substitute accessibility surfaces for Wildlife Parks/Zoos
and Historic Houses/Castles respectively. The inset maps show the locations of individual
substitute attractions. As before, these estimates were assigned to outset zones using the same
ward based population weighting methodology that is described in Section 2.4.
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Figure 16: Area and proximity weighted substitutes accessibility surface for Wildlife Parks
and Zoos
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 Figure 17: Area and proximity weighted substitutes accessibility surface for Historic Houses
and Castles
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2.5.3 Area of Substitute Provision in Outset Region

While, at a micro level, substitutes compete for visitors and thereby may be negatively
associated with visits from a given population, the size of that visiting population may be
positively related to the overall density of substitutes in an area. For example, an area of
outstanding natural beauty encompassing a number of attractions may draw holiday visitors
from some distance. Such areas may also contribute to high numbers of day trip visits from
home if individuals relocate to live in such areas (Gibson, 1978; Parsons, 1991). To allow for
this possibility, further measures were calculated representing the percentage of each outset
zone and its surroundings covered by each substitute considered (e.g. the percentage of the
surrounding area covered by woodland).

Although it would have been possible to simply calculate the percentage area of each district
covered by the substitutes under consideration (an example for woodland is given in Figure
18), this measure would have been somewhat simplistic as, of course, some residents may live
very close to district boundaries. Hence it is preferable to additionally consider access to
substitute facilities in neighbouring districts. Therefore a procedure was developed whereby
each district outset zone was amalgamated with its contiguous neighbours (contiguous
districts are those which share a common boundary) using Arc/Info. For each of these
attraction zones, the area of each substitute was calculated and assigned to the principal
district. This was repeated for all districts within England, Wales, and Scotland. This process
was undertaken for those substitutes with defined areas, such as woodland, inland water,
urban areas and scenic areas. Linear features, such as rivers and canals are represented by lines
in Arc/Info and have no width. Consequently it is not possible to calculate an area for these
features. Hence a buffering technique was used to move the boundaries outwards to give a
mean 20-metre width for all linear features (the assumption being that this gave a reasonable
approximation of the real world width of these features). This provided a measure of area
which enabled them to also be assessed using this method.

Figure 18: Percentage of District Covered by Woodland for an Example Area of Eastern
England
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 2.6 Estimation of Population Demographic Characteristics
 Variations in the demographic structure of populations of outset zones may be a further
influence upon the number of visitors to Forestry Commission sites. For example, there may
be variation in the propensity to seek this type of recreational experience associated with
factors such as wealth, ethnicity, or household structure. Furthermore, due to the specific
recreational experience provided, some sites may be inherently more or less attractive to
certain population groups; children’s play facilities may attract families with younger children
whilst those with cycle trails may attract young adults. Hence measures were computed of the
geographical distribution of population characteristics. For these, key demographic indicators
that were felt may particularly influence visitor numbers were chosen.
 
 Demographic data from the 1991 Census, at the level of local authority districts, was
downloaded from the Census archive at MIMAS. In total 27 indicators (covering indicators of
transport availability, affluence, deprivation, education, ethnicity, age and family size) were
obtained from the 1991 UK Census of Population. Table 7 shows the complete list of
demographic variables used for this research. The categories were selected in order to identify
characteristics which were felt to be indicative of the propensity of individuals to visit the
recreational resources being considered. For each outset zone, population density was also
calculated using population and area figures downloaded from MIMAS.

 
 Table 7: Demographic indicators calculated for each outset zone

 

 Demographic Indicators
 Transport Availability Indicator
 Percentage of population with no car
 Affluence indicators
 Percentage of population of social class 1 and 2
 Percentage of households owned or buying their home
 Deprivation indicators
 Percentage of households with over 1 occupant per room
 Percentage of population of social class 4 and 5
 Percentage of population with long term illness
 Percentage of female population with long term illness
 Percentage of lone parent households
 Percentage of economically active male population unemployed
 Percentage of economically active female population unemployed
 Percentage of adult population in temporary accommodation
 Percentage of adult population in Local Authority/Housing Authority accommodation
 Higher education indicator
 Percentage of population with a higher degree
 Ethnicity indicators
 Percentage of population black and over 16
 Percentage of population Irish and over 16
 Percentage of population ethnic (Black,Indian,Pakistan,Bangladesh,Chinese), over 16
 Percentage of population black,indian,pakistan,Chinese, over 16
 Population age indicators
 Percentage of population retired
 Percentage of households with head retired
 Percentage of population over 16
 Percentage of population over 16 male
 Percentage of population under 5 years
 Percentage of population under 9 years
 Percentage of households with 1 dependent child
 Percentage of households with 2 dependent children
 Percentage of households with 3 or more dependent children
 Percentage of households with no dependent children
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2.7 Data checking and processing

The range of variables generated by the processes set out in preceding sections provides the
necessary basis for estimation of the transferable demand function described in Equation {1}.
The number of visits to a site can now be linked to the travel time of those visits and other
predictors including the type and quality of facilities, the availability and type of substitutes
and the demographic characteristics of the population of outset zone. The remainder of
Section 2 describes the modelling methodology developed and applied in this study.

Once the calculation of variables was complete, all data was sorted, checked and imported
into a common statistical package (SPSS) for initial analysis. Natural logarithms were
calculated for variables where these provided a better fit for modelling, and the visitor survey
data was split. Alongside data concerning all visitors, two additional sub-databases were
prepared. One was  for those visitors self-defined as holidaymakers and was for those who
were on day trips from their home addresses.

Before any analysis could be undertaken, it was necessary to define the structure that the
response variable would take in subsequent regression models. The general requirement was
that it should take the form of an indicator of the number of visitors from each outset zone that
were surveyed at each site. However, there were two issues associated with the specific
definition of the variable. The first was a design concern whereby the amount of effort,
measured in terms of time, that was expended to collect the original survey data varied
between sites. This fact would be expected to influence the number of interviews undertaken,
whereby a higher sample of responses may be anticipated at sites that were surveyed for a
longer period. The second issue was that variations in the population size of each outset zone
may be expected to affect the number of visitors each zone generated. Here it is anticipated
that more highly populated zones would generate more visitors.

To account for variations in survey effort, the number of interviews recorded at each site from
each outset zone was divided by the amount of survey effort expended at that site. Survey
effort was initially measured in hours, but this figure was divided by 24 so that the variable
became a measure of effort in 24 hour periods. In order to account for variations in population
size, the result of the above calculation was then further divided by the outset zone population
number. Hence the response variable became an indicator, over a 24 hour period, of the
average number of interviews undertaken at each site with the inhabitants of each outset zone
that was standardised for the size of the outset zone population. As there were 451 outset
zones and 40 sites included in the models, the data matrix modelled consisted of a total of
18040 (451 multiplied by 40) observations. This was because every outset zone was
represented by 40 response variables, each measuring visitors to each site.

Of course the response variable analysed here has the limitation that it reflects the number of
interviews undertaken over the survey period rather than, necessarily, the actual number of
visitor arrivals at each site. Furthermore, as interviews were often undertaken with a
individual who was actually part of a group of visitors, the models hence predict the number
of parties interviewed rather than individuals. In travel cost modelling these limitations are
unavoidable as a key requirement for the inclusion of observations is that an outset location
can be identified for each, and information on outset locations can only be elicited by
surveying individuals. Nevertheless the reliance on interviews rather than measures of actual
visitor numbers may be a problem for some sites if the number of interviews are not
representative of the number of visitors attending. We investigated the impact that this issue
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may have in the methodology we developed to gross up our results to annual predicted visitor
numbers, and we describe this work later in the report.

Initial regression analysis in SPSS revealed that the response variable, the total number of
group interviews undertaken at each site divided by the survey effort (measured in hours and
then divided by 24 to convert to 24 hour periods) and then further divided by the outset zone
population, was not normally distributed. In fact it showed a strong right-skewed distribution.
This non-linear distribution is due to the low number of visitor counts and high number of
zones containing zero visitors, as illustrated for one site, Salcey, in Figure 19. This results in a
distribution with a mean which is low relative to the overall range of observed visits. This
generally conforms to a Poisson distribution. A form of regression analysis predicated upon
this underlying distribution and capable of predicting visitor counts was therefore adopted for
the modelling work.

Visitors Numbers Per District to Salcey
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Figure 19: Frequency Distribution of Visitors to Salcey

2.7.1 The regression modelling methodologies adopted
To study variations in visitor rates between recreational sites, a statistical model which will
predict visitors for an individual site based upon a range of explanatory variables is generally
required. This is why the most frequently used technique is regression analysis. The simplest
case is linear regression. Linear regression estimates the coefficients of a linear equation,
involving one or more independent variables, that best predict the value of the dependent
variable. For example, it is possible to predict a site visitor rate (number of interviews divided
by survey effort and outset zone population size) from an outset zone from independent
variables such as travel time from site visited, site characteristics, social class, etc.

The ordinary regression relationship for a single site visitor rate may be expressed as:

iii ebxay ���         {2}
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where subscript i takes values from 1 to the number of outset zones in the dataset. In Equation
{2} yi and xi are respectively the visitor rate and travel time to site visited for the i-th outset
zone, a is the intercept where the regression line meets the y axis and b is the slope
coefficient. In contrast ei is the departure of the i-th outset zone actual visitor rate to each site
from the predicted visitor rate, and is known as the error term or residual. In other words the
expression a+bxi forms a fixed model and ei is that part of yi which is not predicted by that
part of the equation. For each site, the value yi may be summed for all outset zones to produce
a prediction for total visitor numbers.

As has been noted, our analysis revealed that the majority of the 453 districts provided no
visitors to any given site. The resultant skewed distribution can lead to problems with the
development of statistical models to predict visitor rates. Here, Ordinary Least Squares (OLS)
regression models, which assume that the frequency distribution is normally distributed and
the variance between districts is constant, are inappropriate. Instead, Poisson regression was
used.

Poisson regression presents a convenient way of modelling a sparse visitor rate. Briefly, the
Poisson model differs from OLS because it describes the probability that an event occurs t
times in a fixed period, given that each occurrence is independent and has a constant
probability. The assumption that the frequency of events is normally distributed with constant
variance is therefore not required. The Poisson variant of the traditional OLS regression is
presented in Equation {3}, where �̂   is the maximum likelihood estimate of the mean of the
Poisson distributed response variable yi (Lovett and Flowerdew, 1989) and X0 is the outset
zone population. In Poisson models the numerator and denominator elements of the response
variable are separated. Hence for the models described in this report, the response variable for
each outset zone was set to be the average number of surveys undertaken at each site with
visitors from that zone over a 24 hour period of survey effort. The natural logarithm of the
outset zone population was modelled as an offset to this. The natural logarithm of this
estimate is hence equal to a linear combination of the corresponding values of the
independent, x, variables. These independent variables represent the explanatory variables
(such as travel times) used in this analysis to quantify and predict variations in visitor numbers
between sites.

))(exp((ˆ 11
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The popularity of regression models stems from their ease of interpretation, widespread
acceptability, and the provision of suitable estimation routines in most popular statistical
packages. However there can be problems with their application in certain areas of visitor
prediction. One of the most fundamental of these arises when the factors influencing the
probability of visitors attending any individual site are seen to be operating at a variety of
scales. For example, irrespective of their measured characteristics, some sites may be more
attractive to visitors than others, and hence may generate more or less interviews than would
be predicted from the values of the predictor variables used to describe them. Similarly, some
outset zones may also generate fewer or greater visitors than may be predicted from the
model. If this is the case the assumption of independence in the residuals from the regression
model is violated, and the parameters estimated may be consequently unreliable.

As described earlier, the dataset being analysed here comprises a series of response variables
for each outset zone, with each corresponding to a derived measure of the number of
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respondents that zone generated to each site. Because both outset zone and site related
characteristics may affect visitor numbers, the dataset can be conceptualised as corresponding
to a hierarchical structure of outset zones nested within sites. The possible existence of such
hierarchical structures within geographical data is commonly ignored. However, disregarding
hierarchies where they are present can lead to the production of models giving unreliable
estimates, incorrect standard errors, confidence limits, and tests (Skinner et al. 1989).
Furthermore, the resultant model will present an over-simplistic picture of a complex reality,
and hence may poorly predict visitor numbers (Goldstein, 1995).

In recent years a new form of statistical modelling has been developed that allows hierarchical
data structures to be easily specified and their influence to be eloquently and efficiently
estimated (Duncan et al., 1998). Several terms have been used to describe this new
development: multilevel models (Goldstein, 1995), random coefficient models (Longford,
1993), and hierarchical linear models (Bryk and Raudenbush, 1992). Hereinafter, only the
term “multilevel models” is used. Multilevel analysis has been applied in a number of fields,
including education (Goldstein et al., 1993), medicine (Goldstein et al., 1994) and population
geography (Jones and Duncan, 1996). It is becoming particularly popular in the field of
geography since geographical analysis often involves the grouping of elementary units of
interest, for example, households and individuals, into higher spatial amalgamations, such as,
neighbourhoods and communities. In such a context it is important to recognise and preserve
the intrinsic differences across these (Bhat, 2000).

Work we have also undertaken with an additional dataset supplied by British Waterways
(parts of this analysis are discussed below) showed that the factors that are statistically
significant predictors of visitor numbers are subject to considerable heterogeneity between
sites. This was  illustrated by the fact that, when separate regression models were fitted for
each site, many of the predictor variables (with the exception of travel time) were found to be
quite site-specific and did not appear in a high percentage of models. Given the similarity of
these recreational resources, we have no reason to believe that this observation would be any
different for the Forestry Commission data. This has obvious implications for any
methodology developed to predict visitor numbers in the absence of actual survey data
because it is possible that a generic model developed for all sites will be limited by the site
heterogeneity. We have investigated this issue using multilevel models.

The Forestry Commission visitor dataset may be viewed as actually corresponding to a two
level hierarchy of visitor rates (level 1) nested within sites (level 2) or of visitor rates (level 1)
nested within districts (level 2). Hierarchical data structures cannot be easily accommodated
within the traditional generalised linear estimation framework. Here, the values of site related
variables must be collapsed to the level of the individual outset zone and simply replicated
across all zones providing a response variable to each site. Fitting regression models which
include dummy variables to indicate this may circumvent this limitation. However, it is
readily apparent that any model estimated using dummies will quickly become extremely
large and complex if the dataset contains many observations at each level of the hierarchy,
such is the case here, as hundreds of dummy variables will be required. This complexity of
model would be of little use in any attempt at function transfer. Furthermore an alternative
solution of fitting separate regression models for each site would also not be viable for
function transfer since there is the requirement of a single model to be used across a number
of sites (we subsequently call this a meta model).

Aside from methodological considerations, a further limitation of traditional generalised linear
estimation methodologies stems from the fact that non-multilevel models are likely to contain
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poorly estimated parameters and standard errors (Skinner et al, 1989). Problems with standard
error estimation arise due to the presence of intra-unit correlation; the fact that observed visit
rates to sites from a single district, or to a single site from a number of districts, may be
expected to be more similar than those drawn from a random sample. If this is the case, the
assumption that the residual, or error terms, produced by the model will be uncorrelated will
not be met.  If this intra-unit correlation is small, then reasonably good estimates of standard
errors may be expected (Goldstein, 1995). However, where intra-unit correlation is large then
traditionally employed estimation strategies such as weighted least squares (WLS) will tend to
under-estimate the standard error, meaning that confidence intervals will be too narrow and
significance tests will too often reject the null hypothesis.

The fitting of true multilevel models overcomes many of the limitations outlined above. We
have also adopted this strategy for the production of meta models from our work examining
British Waterways visitor survey data (Jones, et al., 2000). For algebraic simplicity, a two
level hierarchy of i visitor rates (at level 1) within j sites (at level 2) is considered here to
illustrate the procedure. In other words, for each outset zone we have not one visitor rate but n
rates, where n corresponds to the number of sites in the model (because visitors from any
outset zone can attend any site). Each of those n rates will correspond to a separate site, and
there will be a rate for that site associated with every local authority district. Because the
multilevel meta models encompassed all visitors to all sites, the problem of sparse visitor rates
associated with the individual site models was not so apparent.

In the multilevel case, the visitor rates included in the model are regarded as a random sample
from a population, and hence a regression relation (although not a separate regression model)
is assumed for each. Considering a situation with just one explanatory variable, the proportion
of visitors in each outset zone in Social Class 4&5 (sclass), the model may be written as:

                                      

{4}
In Equation {4} the subscript i takes the value from 1 to the number of visitor rates calculated
for all outset zones (in the case of this dataset the value corresponds to the number of districts
multiplied by the number of sites as each district has a visitor rate to associated with it for
every site), and the subscript j takes the value from 1 to the number of sites in the sample.
Using this notation, items with two subscripts ij vary between outset zones, where an item that
has a j subscript only varies across sites but is constant for all outset zones potentially
producing visitors to that site (and hence having a response variable). If an item has neither
subscript then it is constant across both levels.

As the sites included in the analysis are treated as a random sample from a population,
Equation {4} may be re-expressed as ;

        {5}

Where �0 is a constant and �j is the departure of the j-th site’s intercept from the overall value,
which means that it is a site level (level 2) residual. Therefore this term describes, after
holding constant the effect of the explanatory variables within the model, the residual

ijijjij sclassy ���� 10 ��

jj ��� �� 00

jijij sclassy ��� ��� 10ˆ
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influence of the site (over and above that of the predictor variables in the model) in
determining the number of visitors to it. It therefore allows the identification to be undertaken
of sites that for which visitor numbers are more poorly predicted than would be expected from
the values of the explanatory variables.

The notations expressed in Equation {5} can be combined. Introducing an explanatory
variable cons, which takes the value 1 for all visitor rates (and hence forms a constant or
intercept term), and associating every term with an explanatory variable, we obtain Equation
{6};

                                                                          {6}

In Equation {6} both �j  (the level 2 or site level residuals) and �ij (the level 1 or outset zone
level residuals) are random quantities whose means are estimated to be equal to zero. It is
assumed that, being at different levels, these variables are uncorrelated. Traditionally the
residual error term of a non-hierarchical model, �, is seen as an annoyance and the aim of the
modelling process is to minimise its size. With multilevel models the error term is of pivotal
importance in model estimation. Rather than a single error term being estimated it is stratified
into a range of terms, each representing the residual variance present at each level of the
hierarchy. Viewed in this sense, �j represents site level effects, whilst �ij represents those that
are unexplained by between site differences in model performance.

If, after holding constant the influence of the xij explanatory variables in the model, �j > �ij,
then this would suggest that some factors associated with the site itself are of greatest
importance in determining the number of visitors. If �j < �ij then other, outset zone related,
characteristics may be the most important. A common scenario is that, whilst both �j and �ij

are large in a model containing few xij explanatory variables, �j will decrease as explanatory
variables associated with the site are added, and �ij will decrease with the addition of
information on individual visitors.

The model presented in Equation {6} is known as a variance components model, where the
only random parameters are the intercept variances at each level (Lin, 1997). There are
various methods available for parameter estimation in multilevel models (Gilks et al. 1996,
Hoijtink, 1998). The least computationally intensive approach involves the use of Iterative
Generalised Least Squares (IGLS). IGLS is adequate for situations where there is a large
sample of responses at each level of the hierarchy, for example many visitor rates nested
within many sites (as would be the case if the sample of sites was expanded and visitor rates
from electoral wards were modelled instead of those from districts). IGLS was the estimation
method used in the following section.

Goldstein (1995) describes the theory of IGLS in detail. Briefly, initial estimates of the fixed
terms are derived by Ordinary Least Squares ignoring the higher-level random terms. The
squared residuals from this initial fit are then regressed on a set of variables defining the
structure of the random part to provide initial estimates of the variances/covariances. These
estimates are then used to provide revised estimates of the fixed part, which is in turn used to
revise the estimates of the random part, and so on until convergence. Crucially, a difficult
estimation problem is decomposed into a sequence of linear regressions that can be solved

consconssclassconsy ijjijij 0010 ���� ����

ijjij 0000 ���� ���
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efficiently and effectively, providing maximum-likelihood estimates. However, a limitation of
IGLS for models with a binomial or Poisson distributed response variable is that it uses a
method based on either marginal or penalised quasilikelihood. This requires assumption of
normally distributed variance above level one of the hierarchy. Hence, it is assumed that the
variation in model residuals between sites and districts is normally distributed in the dataset
(although the assumption that the response variable is Poisson distributed remains
unchanged).

It is important to note that the slopes and intercepts that are estimated for units within level 2
and above of the hierarchy will not be the same as those that would be obtained from an OLS
solution; they are in-fact shrunken residuals. They have, to a greater or lesser extent, been

shrunken towards the overall mean relationship. Taking a 2-level model, if )var( 0
2
0 ije ���

and )var( 0
2
0 ju �� � then each site level residual is estimated using Equation {7};

                        {7}

In this equation jy~  is the raw OLS residual. From Equation {7} it can be seen that if nj is large
and there are many outset zones potentially providing visitors to the site the site, then the
predicted level-2 residuals will be closer in value to the raw OLS residual than when nj is
small. If nj is small, then the residual will be shrunken towards the mean. Similarly if 2

0e�  is
large and there is a lot of variability in of the predicted visitor numbers to the site between
outset zones, then the predicated residual will also be shrunken. In this sense, multilevel
estimates can be seen as conservative estimates of variability at different levels of the
hierarchy, where units based on a small sample or a very variable outcome are considered to
provide little information, and are shrunken towards a mean. In the case of the models
developed here the first consideration (different numbers of outset zones potentially providing
visitors) is not important as the dataset is fully rectangular. However, second consideration
(variability in performance in predictions between outset zones) is important.

The methodological sophistication afforded through the application of multilevel models to
high quality, GIS generated variables provides a superior basis for the development of robust,
transferable models of visitor arrivals. In the following section we describe the results
obtained through application of these techniques.
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3. RESULTS: MODELS PREDICTING THE NUMBER OF VISITORS
INTERVIEWED AT SITES

In this section the results of the regression models developed for this research are given.
Recollect that the aim of this exercise is to produce a series of models that may be used to
predict the number of visitors interviewed at Forestry Commission sites based on a matrix of
explanatory variables. These explanatory variables include indices of the accessibility of every
site and potential substitute recreational resources from each outset zone, measures of the
provision of facilities at each site, and indicators of the socio demographic characteristics of
outset zone populations. In these models the response variable was set to be the average
number of interviews undertaken in a 24 hour period (adjusted for the size of outset zone
populations) and therefore we are modelling the number of visitors interviewed rather than the
number of arrivals. Hence the regression coefficients should be interpreted as the effect each
parameter has on determining the number of interviews with parties. The full suite of
explanatory variables considered in these models, along with their definitions and value
ranges, is given in Table 8 below.

Table 8: Explanatory variables used in the analysis

Variable Description Name Min Max
Accessibility indicators
Travel time to site visited ETIMESITE 6.39 712.80
Percentage of population with no car ENOCAR 10.97 65.92
Affluence indicators
Percentage of households with head in Social Class 1 or 2 ESC12 9.66 45.03
Percentage of households owned or buying EOWNBUY 16.05 88.55
Deprivation indicators
Percentage of households with over 1 occupant per room EHHOVER1 0.65 11.11
Percentage of households with head in Social Class 4 or 5 ESC45 3.64 39.90
Percentage of population with long term illness ETOTILL 6.32 26.73
Percentage of female population with long term illness EMILL 3.22 12.77
Percentage of lone parent households ELPARENT 1.42 9.05
Percentage of economically active male population

unemployed
EMUNEMP 2.74 25.33

Higher education indicator
Percentage of population with a higher degree EDEGREE 13.00 33.21
Ethnic indicators
Percentage of population black and over 16 EBLACK16 0.02 20.43
Percentage of population Irish and over 16 EIRE16 0.20 11.09
Percentage of population ethnic

(Black,Indian,Pakistan,Bangladesh,Chinese)
EETHNIC 0.05 40.26

Population age indicators
Percentage of population retired ERETIRE 10.31 37.64
Percentage of households with head retired ERETHH 4.38 42.12
Percentage of population over 16 ETOT16 62.29 91.20
Percentage of population over 16 and male EMALE16 39.40 61.33
Percentage of population under 5 years EPOPU5 2.18 9.65
Percentage of population under 9 years EPOPU9 4.21 18.50
Percentage of households with children ECHILD 8.61 39.16
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Percentage of households with no dependent children E0CH 60.84 91.39
Coastal indicators
Variable Description (continued) Name Min Max
Travel time to nearest coastal region ECOAST 0.42 75.84
Travel time to nearest sandy beach ESAND 1.15 99.82
Water feature indicators
Percentage of district and adjoining districts - main rivers EPERDRIV 0.00 0.17
Percentage of district and adjoining districts - BW canals EPERDBW 0.00 0.26
Percentage of district and adjoining districts - inland water EPERDINW 0.00 4.37
Percentage of district and adjoining districts - all water EPERWAT 0.00 4.43
Travel time to nearest inland water (weighted by size) EALLINW 1.06 39.17
Travel time to nearest primary/secondary river ERIVS 0.60 70.65
Average Travel time to BW canal EBWCAN 0.55 144.81
Woodland indicators
Percentage of district and adjoining districts - woodland EPERDWD 0.00 25.22
Percentage of district and adjoining districts - forest park EPERDFOR 0.00 30.22
Travel time to nearest woodland (weighted by size) EALLWD 0.51 19.79
Travel time to nearest forest park ETMFORPA 3.17 183.99
Scenic area indicators
Percentage of district and adjoining districts - scenic areas EPERDSCN 0.00 79.56
Percentage of district and adjoining districts - National Park EPERDNP 0.00 66.54
Percentage of district and adjoining districts - National Trust EPERDNT 0.00 10.68
Travel time to nearest National Park ENATP 0.08 168.02
Travel time to nearest large heathland area EHTHBG 0.00 79.63
Travel time to nearest scenic area (weighted by size) EALLSC 4.25 69.30
Travel time to nearest National Trust site ENT 2.54 134.45
Population distribution indicators
Population density of outset zone EPOPDEN 0.01 9.92
Percentage of district and adjoining districts - all urban EPERDALU 0.16 99.90
Percentage of district and adjoining districts - large urban EPERDBGU 0.00 99.90
Travel time to nearest urban area EALLURB 0.00 70.93
Travel time to nearest large urban area (over 3500000sq m) EBGURB 0.00 146.80
Other recreational indicators
Travel time to nearest theme park ETHEME 2.93 313.77
Travel time to nearest Wildlife Park/Zoo EWILD 2.84 183.15
Travel time to nearest historic house or castle EHSE 1.17 44.08
Site Characteristics
Presence of a car park at site CARPARK 0 1
Presence of a picnic area at site PICNIC 0 1
Presence of marked walking trails at site WALKING 0 1
Presence of marked cycle trails at site CYCLE 0 1
Presence of marked bridleways at site BRIDLE 0 1
Presence of orienteering course at site ORIENT 0 1
Presence of children’s play facilities at site CHPLAY 0 1
Presence of forest drives at site DRIVES 0 1
Presence of viewpoints at site VIEWS 0 1
Presence of birdwatching hides at site BIRDS 0 1
Presence of camping / caravan facilities at site CAMPING 0 1
Fishing allowed at site FISHING 0 1
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Presence of water body (such as river or lake) at site WATER 0 1
Presence of bothies at site BOTHIES 0 1
Variable Description (continued) Name Min Max
Presence of visitor centre at site VISITOR 0 1
Presence of interpretation point at site INTERPET 0 1
Presence of café at site CAFÉ 0 1
Presence of shop at site SHOP 0 1
Presence of cycle hire facilities at site CYCLE 0 1
Presence of classroom at site CLASSRM 0 1
Presence of toilets at site TOILETS 0 1
Presence of disabled toilet at site DISTOIL 0 1
Disabled access to shop / cafe DISHOP 0 1
Disabled walks DISWALK 0 1

3.1. Initial models

3.1.1 Non-multilevel analysis
All of the regression modelling work presented in this report utilised multilevel modelling
approaches. However, to provide a comparison with the output of those models, we also fitted
an initial non-multilevel Poisson model to determine the predictors of interview numbers for
all visitor types (daytrippers and holidaymakers combined) at Forestry Commission sites. The
results of this exercise are shown in Table 9 below.

Table 9 shows that there are a large number of variables that exhibit a statistically significant
relationship with party interview numbers. In terms of the variables included, this model is
rather similar to the multilevel ones presented later in this report, although the values of the
parameter estimates do differ. A full consideration of the interpretation and meaning of these
indicators is therefore left until the multilevel analyses are discussed from Section 3.2
onwards. However, it is worth at this point noting from Table 9 that the measure that
exhibited by far the strongest association with the response variable is the estimate of travel
time to each site (T=109.7, p<0.001). The coefficient of this variable is negative, showing that
visitation rates show an inverse association with estimated travel times. This observation
conforms to economic theory and suggests that the principal influence on geographical
variations in visitors to each site will be its accessibility (measured here in terms of travel
time) from outset zone locations. Although this travel time measure dominated the model, a
rather wide range of other variables are also significant. These include a number of measures
of substitute accessibility (to woodlands, the coast, canals, inland water, heathlands, and
National Trust properties, urban areas), and outset zone socio-economic characteristics (high
social class, ethnicity, and children and retired populations). The only indicator of facility
provision at sites that proved to show a statistically significant relationship with interview
numbers was the presence of a visitor centre. The coefficient for this parameter was positive
suggesting that sites with such a facility may attract more visitors than those without.
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Table 9: Initial non-multilevel model of interview numbers (all visitor types) to a sample of
Forestry Commission woodland sites across Britain.

Variable Coefficient SE T value P
Constant -11.853 1.676 -7.07 ***
Travel time to site -2.194 0.020 109.7 ***
Travel time to nearest inland water 0.358 0.042 8.53 ***
Travel time to nearest heathland 0.091 0.019 4.80 ***
Travel time to nearest coast 0.043 0.020 2.15 *
Travel time to nearest National Trust site 0.192 0.036 5.34 ***
Percentage of outset zone district classified as
Social Class 1 or 2

0.578 0.078 7.41 ***

Percentage of outset zone district classified as ethnic -0.231 0.029 -7.97 ***
Percentage of outset district and surrounding
districts classified as woodland

-0.043 0.012 3.58 ***

Percentage of outset district and surrounding
districts classified as British Waterways canals

-0.014 0.002 7.00 ***

Early site visitors (7am to 10am) -0.089 0.005 -17.80 ***
Travel time to nearest large urban area 0.045 0.014 3.21 **
Presence of visitor centre at site 0.383 0.039 9.82 ***
Percentage of population aged under 5 years 1.059 0.280 3.78 ***
Percentage of households with retired head 0.515 0.221 2.33 *
* = p<0.05, **=p<0.01, ***=p<0.001

As the model presented in Table 9 was based upon a Poisson distributed response variable it
was not possible to calculate an R2 value in order to assess goodness of fit. Whilst some
pseudo-R2 measures have been developed to approximate goodness-of-fit for Poisson models
our experience is that they are very unreliable. Instead we assessed the goodness of fit by
comparing the scaled deviance of a null model (i.e. that with no explanatory variables
included) with that of the final model described above. The scaled deviance is an indicator of
the variance in the response variable that is unexplained by the explanatory variables. Because
of this, its value reduces as more variables are added to the model, and the magnitude of each
reduction is associated with the explanatory power of each new addition. The reduction in
scaled deviance observed by moving from null to final models follows the chi-squared
distribution, and hence can be employed to calculate a probability based indicator of model
goodness of fit. Here the null model scaled deviance was -9021 whilst that of the final model
presented above was –8605. The difference was 416, which was statistically significant at well
below the 0.001 value. Hence the above model gave a very good fit to the data, which is
unsurprising given the strength of the observed relationship with travel times.

Unfortunately it was not possible to produce similar goodness of fit measures for the
multilevel models outlined below. This is because there is still considerable uncertainty
regarding the formulation of deviance statistics for non-linear (i.e. Poisson) multilevel models.
This is still an area of active research (see Rasbash et al. 2000) and hence no facility for
deviance calculations is provided by the MLWin software we used to fit the multilevel
models. Nevertheless, our observations confirm that these models generally fit the data well,
and hence it may be assumed that their goodness of fit is also highly statistically significant.
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3.1.2 Comparison with models produced for British Waterways datasets
In addition to the development of a non-multilevel model to provide a comparison with later
analyses, initial analyses were also guided by our experience of estimating visitor arrivals
models for visitors to British Waterways (BW) recreational sites (Jones et al., 2000). This
research  utilised a survey dataset of 5058 valid interviews, conducted  between 1997 and
2000, with visitors at 53 BW sites throughout England, Scotland and Wales. Unlike the
Forestry Commission data, that supplied by British Waterways was collected during an
identical eight-day period each year. While this allows comparison between years it does not
provide information concerning seasonal fluctuations in visitation patterns. Furthermore, no
record of people or groups of people not interviewed was recorded.

The best fitting model of visitors to BW sites combined a variety of access (travel time),
substitute availability, socio-economic and site characteristic variables. As an initial
investigation of the Forestry Commission dataset, an identical set of variables were applied to
provide a comparative multi-site or meta-model of all visitors to woodlands (i.e. not
distinguishing between day-trippers, holidaymakers, etc.). Results for this model are presented
in Table 10 .

Table 10:  Initial meta-model of interview numbers (all visitor types) to a sample of Forestry
Commission woodland sites across Britain.

Variable Coefficient SE T value P
Constant 2.353 0.455 5.177 ***
Travel time to site -2.496 0.024 -105.94 ***
Travel time to nearest historic house or castle 0.038 0.044 0.875
Travel time to nearest wildlife park or zoo 0.231 0.031 7.477 ***
Percentage of outset zone and surrounding districts
classified as urban

-0.032 0.010 -3.126 ***

Percentage of outset zone population aged under 5
years

-1.145 0.175 -6.558 ***

Percentage of outset zone population reporting
limiting long term illness

-1.373 0.100 -13.774 ***

Presence of fishing facilities at site 0.966 0.461 2.094 *
Scottish site 1.081 0.367 2.945 ***

2
0u� 0.918 0.208 4.413 ***

* = p<0.05, **=p<0.01, ***=p<0.001

The model described in Table 10 conforms well to prior expectations. All of the explanatory
variables used were statistically significant in explaining visits to BW sites and most remain
so when applied to our data on woodland visits. The offset in the Poisson regression models
has been constructed so that they control for the effects of zonal population in boosting visitor
numbers, thus all results have already controlled for this factor. Given this, by far and away
the strongest predictor is that of travel time from the outset origin to the site. As expected, this
yields a negative coefficient reflecting the fact that increasing ‘cost’ (here measured as the
untransformed travel time variable rather than some inferred travel cost valuation) is
associated with lower numbers of visits.
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The best fit BW model contained two substitute accessibility variables, the first of which,
travel time to nearest historic house or castle, proves to be the only insignificant variable when
the model is applied to the Forestry Commission data. However, the other substitute variable,
travel time to nearest wildlife park or zoo, proves to be highly statistically significant. The
positive coefficient on this variable is as expected indicating that as distance to such
substitutes increases so the number of arrivals at woodland sites also rises.

Three socio-economic variables were included in the optimal BW model and these also prove
significant in predicting woodland visits. All three can be loosely described as deprivation
indicators and all yield negative associations with visitation.

Two site characteristic variables prove statistically significant in both the BW and Forestry
Commission models, both yield positive coefficients showing visits are higher than would
otherwise be expected for sites with fishing facilities and for Scottish sites. While the former
seems self explanatory the second appears to reflect higher than expected visits (especially
amongst holidaymakers) at otherwise relatively remote, low visitation sites.

One of the key interests of fitting a multilevel model here was to determine if, after
controlling for the explanatory variables in the model, there remained statistically significant
variations in unexplained residual variance in interview numbers (as described by the

ju parameter discussed in Section 2.7.1) undertaken between sites. These random effects are
summarised by the 2

0u�  parameter at the bottom of Table 10. Interpretation of this part of the
model is relatively simple. Although, as outlined above, the multilevel methodology we used
involves estimating a separate ju  value for each site, the variance present in ju  values
between sites can be neatly summarised by 2

0u� . This is the same parameter used in the
calculation of the shrinkage factor illustrated in Equation 7. It is known as a variance
parameter, as it measures the variance in ju �values estimated for each site. In other words, it
shows the variability in the model residuals that may be attributed to unexplained differences
between sites. For a large sample such as that used here, the statistical significance of 2

0u�  may
be assessed by using a Wald test (Korn & Graubard, 1990). For a smaller sample (for example
if there had only been far fewer sites included in the analysis), the assumption of normality
between higher levels of the hierarchy may not hold true, and higher level variances are better
modelled using simulation methods (Browne and Draper, 2000). In this case, from an
examination of the T value (4.413) and associated probability (p<0.001) of 2

0u� , it is clear that
statistically significant residual variance in interviews is present between sites. Hence there
appears to be significant variability in the performance of the model between sites, suggesting
that there may be factors that make certain sites more or less attractive to visitors than may be
expected based upon predictions made from the explanatory variables we have considered in
the meta-model. To some extent this observation was unexpected as our other work using
British Waterways data found, when separate regression models were fitted for each site, there
was considerable variability observed in the predictors of visitor numbers. The nature and
implications of this site level variance is discussed in more detail in the sections below.
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3.2 An initial transfer exercise

As noted, the model described in Table 10 is a meta-model drawing upon information from all
the sites for which we have survey data (as opposed to a single site model). As such it can, in
principle, be used for transfer purposes to predict arrivals at other sites. However, given that
we do not have information on any other sites we need to invoke other strategies with which
to test the efficacy of this model for transfer purposes. Therefore, a series of ‘omit’ models are
estimated. Here, for each site in turn, data from that site is dropped from the analysis and the
model re-estimated, drawing upon data from all other sites (i.e. treating these as ‘survey’ sites
and the omitted site as the ‘target’). The coefficients from this exercise are then used in
conjunction with information on the values of the explanatory variables at the omitted site to
predict arrivals at that target site. In this manner we obtain a transferred estimate of arrivals.

Table 11 details resulting transferred estimates of arrivals at each of the 40 sites in the
Forestry Commission dataset. As can be seen, they provide an excellent prediction of actual
arrivals. In the table shaded cells denote Scottish sites which, as indicated above, may be
statistically distinct from other sites. It is important to note that the inclusion of the multilevel
residual in this set of models means that the high degree of accuracy with which the models
predict the actual number of interviews undertaken needs to be interpreted with caution, as the
model has a in-built correction for disparities in goodness of fit at each site. This is because
these predictions were made with the site level multilevel parameter ju  included in the model.
The inclusion of ju  during model development and testing of models is normal practice, as
the parameter corrects for unexplained variability between sites when predictions are being
made. However, as ju  is, in reality, forming part of the residuals from the model, its inclusion
will lead to better fitting predictions than those that would be obtained if a coefficient for the
parameter had not been estimated. This observation is important because, if the model was
being used to predict the number of visitors that may attend sites for which no survey
information was available, it would not be possible to estimate a ju  value. Hence in the more
rigorous testing of the models, as detailed in later in this section, we did not include values for

ju  in the predictions being made.
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Table 11: Results from the initial transfer exercise: Predicting numbers surveyed (all visitor
types). Note observed visitors surveyed are those for which valid outset locations could be
determined

Observed
Visitors
Surveyed
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3.3 Refining the meta-model: A best-fit model for woodland visits

In providing a richer picture of the source of variation within hierarchical data, the multilevel
residual (uj) estimated in models such as that described in Table 10 can be used to investigate
omitted variables which can in turn be defined as predictors of arrivals within the
conventional (or ‘fixed’) part of the meta-model. This process is graphically illustrated in
Figure 20 which shows values for ju for each site ordered from the most negative to the most
positive value. Sites towards the left of this plot (with negative ju values) are associated with
fewer interviewed parties than predicted based on the values of the explanatory variables
within the model, whilst sites at the right of the plot (with positive ju  values) had more
interviews than predicted. For each site, comparative 95% percent confidence intervals are
provided. If these confidence intervals do not overlap when two sites are compared, then this
signifies that the performance of those sites in the model is significantly different (i.e. they
appear, from a statistical sense, not to be drawn from the same populations). Conversely the
performance of sites with overlapping confidence intervals in the model is statistically
indiscernible. The dashed line in the centre of Figure 20 corresponds to a ju  value of zero. As
a ju  value of zero for a site would be observed for one that sat at the mean of the population
(i.e. the ju  residual was not significantly high or low), the line is useful. This is because the
location of sites along the ranking can be examined with respect to it; sites which have
confidence intervals that do not overlap with the line show statistically significant over
prediction (if they are below the line) or under prediction (if they are above the line) of party
interviews.  It is this examination of the ranking of sites that can elucidate information on
potential new explanatory variables that were not included in the original model used to
generated the ju  values. This exercise revealed that Scottish sites yielded the four highest
positive multilevel residuals, the most extreme of which (Kylerhea and Glentrool) are
identified in the figure. Conversely the English site of Blidworth Woods is identified as
having the highest negative residual. Overall analysis of trends in the multilevel residual
support the argument that Scottish sites are somewhat distinct from English or Welsh
woodlands. This observation gives further weight to the use of a dummy variable
differentiating Scottish sites from those located elsewhere, and this variable was hence
included in the models described below.

Figure 20: Rank ordered values of the multilevel residual (uj) estimated for the initial meta-
model
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Table 12:  Best-fit meta-model of interview numbers (all visitor types) to a sample of Forestry
Commission woodland sites across Britain.

Extensive analyses were undertaken to identify a best fitting model for visits to our sample of
British woodlands. These analyses ranged across a full set of the potential explanatory
variables identified in Equation {1}. Table 12 details our best-fit model.

The model described in Table 12 has expected signs on a large number of significant
predictors. As before, controlling for population in each outset zone, the dominant factor
determining visits is the negative influence of increasing travel time. This is modified by a
number of substitute availability variables all of which indicate that arrivals at any given
woodland are positively related to increases in travel time (i.e. lower accessibility) from outset
locations to substitutes. Interestingly, our GIS based methodology has allowed a far larger set
of substitutes to exert a significant effect upon arrivals, including a range of outdoor activity
attractions (inland water, heathland, coast and National Trust sites) but also large urban
centres. This suggests that many potential woodland visitors do consider both similar, natural
environment, outdoor sites and manmade attractions as substitutes for woodland recreation.
Further substitute relationships are expressed in the variables detailing the percentage of
outset and surrounding districts which is either woodland or canalside. Here the expected
relationship is again observed as increases in these figures (i.e. increases in local substitute
availability) are associated with reductions in the number of visitors interviewed at any given
woodland.

Continuing down Table 12 we see that, as before, a number of socio-economic and
demographic variables prove to be significant predictors of the numbers interviewed. Areas
which have higher levels of young children, retired or higher social classes are all associated
with elevated numbers of visitor interviews. A number of potential explanations can be put
forward for these results all of which seem plausible. Families with young children may well
be more disposed to outdoor activities while the retired have less time constraints than others.
Similarly higher social groups typically have higher incomes and so have greater mobility and
ability to afford travel costs. Conversely areas with more ethnic populations yield less visitors,
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a result which may reflect tastes or associated lower income levels or may be a proxy for the
lower accessibility of woodlands to the primarily urban ethnic community.

The ‘Early site visitors’ variable controls for sites where a relatively high proportion of
interviews were conducted early on in the day (defined as between 07.00 and 10.00). The
lower number of visitors during this time period is reflected in lower numbers of interviews
being completed than would otherwise be expected. Interestingly only one of the numerous
site facility and quality variables gathered proved to exert a significant impact upon the
numbers interviewed (and even then the effect is relatively weak if in accord with
expectations). Visitor interview numbers were higher at sites with interpretation points
(labelled information centre in the above model). Taken at face value this may seem a strong
assertion and it may well be that such a variable is either a proxy for other facilities or site
characteristics. Alternatively this may be an endogenous effect if the decision to install a
notice board may well depend on there being sufficient visitors to warrant its erection. Indeed
the analysis we present later where we control for the mix of holidaymakers and day visitors at
each site suggests that this latter explanation may well be true. If so its inclusion is dubious,
but given the relatively weak nature of this effect it would not pose a major endogeneity
problem and so is retained.

Finally, as per our findings for British Waterways canals, Scottish sites were found to be
significantly and positively related to visitor interview numbers. Such sites appear to generate
more recreational demand than would be expected given their other characteristics (note that
this does not mean that they yield more visits in total, just that there are more than expected).
One possibility may be the influence of holiday visitors boosting the potential visitor pool
above that associated with the relatively sparsely distributed local population.

Overall the best-fit model seems highly satisfactory from a theoretical perspective being
considerably richer than that provided by most previous research and being consistently in
accordance with prior expectations derived from theory and previously observed empirical
regularities.

Figure 21 details the ranked multilevel residuals ( ju values) from the best-fit model.
Comparison of the scale on this graph with that for our initial model as shown in Figure 20,
indicates a substantial reduction in the size of uj across sites, as would be anticipated from the
introduction of new explanatory variables.

Figure 21: Rank ordered values of the multilevel residual ( ju ) estimated for the best-fit meta-
model



55



56

Table 13 provides further information regarding the nature of the multilevel residual estimated
from our best-fit meta-model. Here sites are ordered according to residuals with names of
Scottish sites shown in shaded cells. No particular trend could be discerned within the
distribution of these values and together with the reduced size of residuals these findings
provide further support for the best-fit nature of this model.

Table 13: Sites ranked by size of multilevel residual ( ju )estimated from best-fit meta-model
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These positive attributes suggest that the best-fit model does provide a plausible basis for
function transfer; to which we now turn.

3.4 Transferring the best-fit meta-model for woodland visits

In order to demonstrate the impact upon arrival estimates of including or excluding the
multilevel residual within our transfer exercise, we adopt both approaches in the following
analyses. Table 14 details predicted arrivals when the target site is omitted but the multilevel
residuals for that site are retained. As can be seen predictions of the number of visitors
interviewed are extremely close to the observed number of interviews. By contrast Table 15
repeats this exercise but excludes both the target site and its multilevel residual thus providing
a more realistic assessment of the likely performance of the model in a real world policy
situation from which no survey based information is known about a given target site.

Table 14: Transferred predictions of interview numbers for all visitor types from the best-fit
meta-model including multilevel residuals for all sites (including target site)
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Table 15: Transferred predictions of interview numbers for all visitor types from the best-fit
meta-model excluding observations and multilevel residual for the target site

Inspection of Table 15 shows that while the overall trend of results is encouraging,
nevertheless there is substantial error at certain sites. While some are over predicted, others
are under predicted.
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Figure 22: Plot of observed and predicted visitor interview numbers for all sample sites. 

Can such a model provide useful input to the real world planning and decision making
process? In order to address this issue the relationship between observed and predicted
interview numbers was inspected further. Figure 22 details this relationship (with predicted
interviews for each site on the vertical Y axis, and actual interviews on the horizontal X axis)
and includes a regression line indicating the expected positive relation between observed and
predicted values.

Inspection of Figure 22 suggests that the observed number of interviews may not entirely be
an  unbiased reflection of the characteristics of the site, as there seems to be some truncation
of these values at roughly 700 interviews. Factors underlying this are not clear but it may be
that interviewers were instructed to finish interviewing, or decided to do so of their own
accord, once this level was reached. Accepting that this will militate against a clean test of our
model it is nevertheless clear that our best-fit meta-model differentiates well between sites
with high and low visitor interview numbers. A simple correlation test gives a values of 0.709
(p<0.001) suggesting that the model performs well overall. A further Chi-square test of this
assertion examines the ability of the model to predict sites which are either above or below the
mean number of surveys was undertaken. Results showed that the model readily satisfies such
a test (X2 = 11.00; p<0.001).

3.5 Subsample models for day-visitors and holidaymakers

As discussed previously, our sample of interviewed visitors actually consists of at least two
distinct sub-samples; that of day visitors on trips from their home address; and that of
holidaymakers setting out from temporary addresses. Recollect however that, for
holidaymakers, no information was available on their place of stay during their holiday. Thus,



60

for both sets of visitors, measures of travel time to each site and to substitute resources were
computed based on residential locations rather than those which necessarily formed the outset
location on the day in which each interview was undertaken. Table 16 details the total number
of visitors interviewed and the number and proportion of these which were day trippers (from
which holidaymaker numbers can be inferred).

Table 16: Total number of visitors interviewed and the number and proportion of these which
were day trippers.
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Table 17: Applying the best-fit meta-model for all visitor types to the sub-sample of day
trippers (other visitors excluded)

As an initial comparison the specification of our best-fit meta-model (Table 12) was applied
in turn to both the day-tripper and then holidaymaker subsamples. Table 17 details the
resultant model for daytrippers.

Comparison of our models for all visitors (Table 12) with the same model applied to day
trippers (Table 17) shows that they are similar in most but not all respects. A minor difference
concerns the variables for information centres and retired populations, both of which are now
insignificant although their signs remain unchanged. More importantly the coefficient on the
key ‘travel time to site’ variable is substantially more negative in the model applied to day
trippers (-3.292) than when applied to all interviewed visitors (-2.563). This suggests that
consumer surplus values for a single day-trip visit are likely to be lower than those for the
overall sample of visitors and hence even lower than those for the holidaymakers who
constitute the remainder of that overall sample. This needs to be offset against the fact that
day-trippers may well make more trips per annum than holidaymakers and therefore have
higher annual values for the woodlands concerned. Again this accords with expectations and
reflects comparisons of travel cost consumer surplus and contingent valuation willingness to
pay values for woodland recreation when assessed for both day trippers and holidaymakers
(Bateman et al., forthcoming).

As noted, the model given in Table 17 relies exclusively upon those variables included in our
best-fit model for all visitors (Table 12) and is useful for comparative purposes. However, we
also estimate a best-fit model for day-trip visitors alone the details of which are presented in
Table 18.
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Table 18: Best-fit meta-model for predicting the number of day trip visitors interviewed
(other visitors excluded).

Consideration of Table 18 shows it to be very similar to that given in Table 17. The one major
difference is that the Scottish site indicator has now proved insignificant. This suggests that
the variable is important in explaining holidaymaker visits but not those of day trippers (i.e. it
is not reflecting a cultural difference between those who live in Scotland and elsewhere
regarding their attitudes to woodland recreation).

Turning to consider the sub-sample of holidaymakers, estimated models identified a
considerably shorter list of significant predictors than applied for either the all visitor or day
tripper samples, a finding which may well reflect the considerably lower number of
holidaymakers observations collected. Table 19 below details the best fitting model for
holidaymakers. As expected, the travel time coefficient is substantially less negative than for
the all sample model, the difference being even greater when compared to the day-tripper
model. The reduced absolute magnitude of this coefficient is associated with higher per visit
consumer surplus values, but as discussed, the lower number of visits made by holidaymakers
means that their annual consumer surplus value for all visits made is likely to be smaller than
that for day trippers. Coefficients on all other explanatory variables have consistent signs with
previous models.
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Table 19: Best-fit meta-model for predicting the number of holidaymaker visitors interviewed
(other visitors excluded).

Variable Coefficient SE T value P
Constant -13.604 0.656 -20.74 ***
Travel time to site -1.065 0.052 -20.48 ***
Travel time to nearest inland water 0.205 0.069 2.97 **
Travel time to nearest large urban area 0.054 0.011 4.91 ***
Percentage of outset district and surrounding districts
classified as British Waterways canals

-0.009 0.003 -3.00 ***

Travel time to nearest woodland 0.189 0.068 2.78 **
Percentage of outset zone district classified as Social
Class 1 or 2

0.786 0.111 7.08 ***

Percentage of outset zone district classified as Forest
Park

0.191 0.058 3.30 ***

Presence of visitor information centre at site 1.155 0.442 2.61 **
Early site visitors (7am to 1pm) -0.134 0.048 -2.79 **

2
0u� 1.299 0.320 4.05 ***

* = p<0.05, **=p<0.01, ***=p<0.00

Figure 23 illustrates residuals from the above model while Table 20 ranks sites by residual
value (ranked from most negative to most positive). Inspection of Table 20 revealed an
interesting trend; it appears that those sites that have the largest number of holidaymakers
visiting them also tend to have the most positive residuals. As the presence of a positive
residual for a site signifies that more interviews have been undertaken than would be predicted
based on the values of the regression coefficients, this observation suggests that the model is
tending to under-predict visitor numbers at sites that appear, based on the observed data, to
particularly appeal to holidaymakers. To examine this issue further, a new explanatory
variable was created. This was set to be the percentage of total numbers of interviews at each
site that were undertaken with holidaymakers, as opposed to day trippers. The model was re-
fitted with this new explanatory variable included. This gave the results detailed in Table 21.

Figure 23: Rank ordered values of the multilevel residual (uj) estimated for the best-fit meta-
model for holidaymakers
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Table 20: Sites ordered from most negative to most positive values of the multilevel residual
(uj) estimated for the best-fit meta-model for holidaymakers
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Table 21: Best-fit meta-model for predicting the number of holidaymaker visitors interviewed
(other visitors excluded) including measure of percentage of interviews undertaken at each
site that are with holidaymakers.

Variable Coefficient SE T value P
Constant -14.707 0.525 -28.07 ***
Travel time to site -1.067 0.052 -20.52 ***
Travel time to nearest inland water 0.207 0.069 3.00 ***
Travel time to nearest large urban area 0.054 0.011 4.91 ***
Percentage of outset district and surrounding
districts classified as British Waterways canals

-0.009 0.003 -3.00 ***

Travel time to nearest woodland 0.189 0.068 2.78 **
Percentage of outset zone district classified as
Social Class 1 or 2

0.783 0.111 7.05 ***

Percentage of outset zone district classified as
Forest Park

0.190 0.058 3.27 ***

Presence of visitor information centre at site 0.195 0.228 0.85
Early site visitors (7am to 1pm) -0.073 0.024 -3.05 ***
Percentage of visitors who are holidaymakers 0.042 0.004 10.50 ***

2
0u� 0.255 0.077 3.31 ***

* = p<0.05, **=p<0.01, ***=p<0.00

A comparison between Tables 19 (model without percentage of holidaymakers included) and
21 (the model with this new variable added) reveals a number of interesting differences.
Firstly, it is apparent from Table 21 that, as anticipated from the examination of rankings in
Table 20, the indicator of holidaymakers is highly statistically significant, with a positive
coefficient of 0.042 and a T value of 10.50 (p<0.001). The positive sign on this new indicator
confirms that, holding constant the effect of the other variables in the model, sites which have
a higher proportion of holidaymakers visiting them tend to be associated with a higher number
of interviews. This suggests that they may be particularly attractive to visitors.

A second observation made from this new model is that, whilst the presence of a visitor
information centre at a site was found to be a statistically significant predictor of the number
of interviews undertaken in Table 19, this is now no longer the case (in the above table
p=0.85). This suggests that those sites that have this facility may also tend to be those that
attract holidaymakers. Indeed a comparison between sites with and without a visitor
information centre of the percentage of interviews that were with holidaymakers shows this to
be the case; at sites with a visitor information centre an average of 42.9% of interviews were
with holidaymakers, whilst at sites without the facility only 15.8% of interviews were with
holidaymakers. Hence in the earlier model it may not be the presence of an information centre
that is attracting visitors, but rather that such features tend to be provided at sites which
already attract large numbers of holidaymakers.

A third observation when the models in Tables 19 and 21 are compared is that, although still
statistically significant, the size of the variance of the site-level multilevel residuals has
reduced from 1.299 to 0.255 after the introduction of the new variable. Given that the
indicator of holidaymaker numbers is itself highly statistically significant this observation is
unsurprising, as it may be expected that at least some of the previously observed variations in
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model performance between sites may be due to the differing number of holidaymakers
visiting each.

The finding that suggests that sites that attract more holiday visitors than the previous model
predicts also tend to attract more visitors in general is an interesting one. Of course, the new
variable measuring the proportion of interviews at each site that are undertaken with
holidaymakers does not in itself explain the reasons why these sites appear to be particularly
attractive to this group of visitors, and the precise reasons for this require further research. It is
likely that some, as yet unmeasured, characteristics of the sites are pertinent. For example it
may be that they tend to be located in areas that are particularly popular holiday destinations
and hence have a propensity to attract more visitors because there are many people staying in
the vicinity. Alternatively it may be that these sites have some facility, unmeasured by us, then
tends to attract holidaymakers to them. Whilst these possibilities suggest that further work
should be undertaken, this line of enquiry is not followed further in the work presented here.
This is because, from a benefit transfer point of view, information would not be available on
the percentage of holiday makers visiting unsurveyed sites, and hence this indicator cannot be
included in transfer models.

Table 22 below details transferred predictions of the number of holidaymakers interviewed
from each site obtained from applying the best-fit meta-model as detailed in Table 19. This is
calculated as per Table 18 (for day-trippers) by excluding observations for target sites but
retaining this information for the purposes of estimating the multilevel residual. Comparisons
between these results and those presented previously shows that, as we may expect, the
holidaymaker transfer model performs relatively poorly for sites with very few (say, less than
10) holiday maker interviews.
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Table 22: Transferred predictions of holidaymaker interview numbers from the best-fit meta-
model including multilevel residuals for all sites (including target site)
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4. CONVERTING FROM PREDICTING THE NUMBER OF VISITORS
INTERVIEWED AT SITES TO PREDICTING ANNUAL VISITS

The models detailed above focus upon the prediction of the number of visitors interviewed at
each site (adjusted to a standard unit of survey time). However, for decision making purposes
this needs to be converted to some estimate of total visitation numbers within some specified
period which, for the purposes of this research, is taken to be one year.

Such conversion is in some respects more difficult than the modelling exercise undertaken
above, not because of its intrinsic complexity, but because of a lack of accurate information
concerning the relationship between the numbers interviewed and annual arrivals. Indeed the
accuracy of estimates of the annual number of visitors to sites is itself an issue of some
concern.  Furthermore, as we have shown elsewhere (Bateman et al., 2002), errors within the
aggregation process can induce far greater variability in estimates of total demand than do
errors within the modelling exercise outline above.

In order to facilitate testing of any predictions of annual arrivals, the Forestry Commission
supplied their own estimates for a subset of five sites, included within our preceding analysis,
for which they held annual arrivals data. This data is summarised in Table 23 however it
should be emphasised that, while these are best estimates, the Forestry Commission
recognises that they may be subject to significant error due to problems with the means of data
collection available (traffic counters, etc.). Note that these estimates, like those modelled in
the preceding section, refer to party visits rather than necessarily those made by individuals.
However, conversion from the former to the latter is a relatively trivial task providing that
information on party size is held at a site level.

Table 23: Forestry Commission estimates of annual party visits at five sites.

 Site number Site name Total number of
party visits per

annum
9 Beechenhurst 72,845

17 Blidworth Woods 63,849
33 Chopwell 33,708
95 Mabie 51,704

126 Symonds Yat 77,525
Total:- 299,631

Remember that the figures given in Table 23 are in terms of party visits. This accords with the
units used in our modelling exercise and therefore no mismatch occurs here (although readers
should remember that these values do not necessarily equate with those of individual visitors).

The simplest method of converting the number of predicted interviews to the number of
annual visits is to simply multiply the predictions obtained from the main meta model
described in Table 12 by a constant value. It is important to note that the models described in
the previous sections of this report predict the number of interviews undertaken at each site
during a period which has been set at 24 hours. However, this period does not correspond to a
calendar day as visits are not uniformly spread across a 24 hour period. The Forestry
Commission have estimated that the average number passing during one interview hour is
likely to be around 1/8th of the daily total (pers comm., Simon Gillam 16 April 2002).
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Therefore, in order to scale the model predictions to annual numbers, the predicted number of
interviews in each 24 hour period was divided by 24 (to give an hourly prediction) and then
multiplied by 8 (to scale up to a daily value). The result was then further multiplied by 365.25
in order to give an annual prediction.  

A further complication arises whereby the number of interviews included in the model (and
hence predicted) at each site does not necessarily equate to the original number of interviews
undertaken. This is because it was necessary to exclude from the modelling process interviews
where no outset location could be determined. For example, at Beechenhurst, only 58% of
interviews were associated with a valid postcode. Hence an additional correction was
undertaken whereby the predicted number of visits at each site was scaled upwards in order to
account for these non-modelled visitors.

An further issue concerned the relationship between interview effort, the number of completed
interviews and the number of visitors during the interview period, as an interviewer can only
interview one party at a time. This consideration is important as the above models are based
on the number of interviews undertaken at sites rather than, necessarily, the actual number of
visitors. Therefore allowance had to be made for those who entered the site while others were
being interviewed and therefore could not be interviewed themselves. Information regarding
the necessary adjustment to allow for this factor was provided by the Forestry Commission
This consisted of an estimate of the number of groups who had visited each site, but were not
interviewed, in the period during which surveyors were present.  This value used to calculate a
further scaling factor for each site, which was set to be the ratio of unsurveyed to surveyed
groups, and predictions made for each site were then multiplied by this ratio (The ratio of
visting parties not interviewed to valid interviews was 0.69 for Beechenhurst, 1.62 for
Blidworth Woods, 0.73 for Chopwell, 0.16 for Mabie, and 1.43 for Symonds Yat). This scaled
up predictions of interview numbers to provide estimates of the corresponding number of
arrivals during that period. The results of this entire exercise are given in Table 24 below.

Table 24: Comparison of Forestry Commission and model estimates of annual visits to five
woodlands: Multiplication by 365.25.

Site name Forestry Commission
estimate of the number

of party visits per
annum.

Predicted number of party visits
per annum based on upwards

scaling (see text)

Beechenhurst 72845 22024
Blidworth Woods 63849 78532
Chopwell 33708 17854
Mabie 51704 21204
Symonds Yat 77525 16267
Total:- 299631 155881

A comparison of the estimated number of party visits provided by the Forestry Commission
with those produced from the model show that the predictions of party numbers for all sites
agree within one order of magnitude. However, there are relatively large discrepancies
between predicted values obtained from this method and those values provided by the Forestry
Commission. Across all five sites, the Forestry Commission estimates suggest there may be
299631 annual party visits whilst the results from our analysis scaled in the manner described
above give a lower figure of 155881 visits. This provides a ratio of our own to Forestry
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Commission predictions of 0.52. Given that there may be considerable uncertainty associated
with the Forestry Commission estimates themselves this degree of agreement is not entirely
unexpected. However, by simply scaling a 24 hour based model in the manner described
above, a number of factors that may be important were ignored. In particular, using this
method it was not possible to account the fact that the surveys at each site were undertaken at
different times of the year, and hence it may be expected that those undertaken during the
summer would provide more interviews due to anticipated seasonality in visit rates. This issue
could explain the general tendency of our model to under-predict compared to Forestry
Commission estimates, and are addressed in the subsequent analyses described below. This is
a potentially important issue as we know that the distribution of total visits is not uniform
across the year. Therefore adjustment had to be made to allow for the effect of surveys being
undertaken in more or less popular times of the year.

Two approaches were developed to allow for the distribution of visits across the year within
estimates of annual arrivals. The first approach drew upon information derived from the 1998
UK Day Visit Survey (UKDVS),  (National Centre for Social Research, 1999) details of
which are provided in Table 25. It is important to note that one limitation of the UKDVS that
it only covers visits from home. This partly explains the low figure for August when a higher
proportion of visits are made from holiday bases.

Table 25: Distribution of day visits to woodland by month

Source: UK Day Visit Survey
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The information given in Table 25 shows that visits peak during the months of June and July
but are fairly uniform during other months with a further peak during January. We were
somewhat surprised by this information as it did not accord with that used by Bateman (1996)
in an analysis of weekly arrivals over a two year period at a site in Thetford Forest. In the
latter study a much less bimodal distribution was observed, devoid of the January peak seen in
Table 25. Furthermore, while the distribution given in the UK Day Visits Survey is relatively
flat across the months of February, March, April, May, August, September, October,
November and December. In contrast the study by Bateman (1996) shows a clear upward
trend as the seasons pass from Winter to Summer and a decline from Summer to Winter (with
significant impacts from unusually adverse weather within each season and bank holiday
effects). Given these contrasting results, we describe the work and results of  Bateman (1996)
in Appendix A of this report.

Given the above observation, which may be associated with the fact that the survey only
measures visits from home, we have some concerns about using the UK Day Visit Survey data
as the basis for any conversion from per day to per annum predictions of arrivals at
woodlands. Nevertheless, this approach was tested as follows. For each site, note was taken of
the proportion of total survey effort which occurred in each month. A methodology was
developed whereby for the months surveyed the estimate of the number of visitors in the
survey period was converted to a monthly value. Based on these monthly value estimates the
number of visitors at other times of the year when no survey had taken place was calculated.
Scaling was undertaken according to the extent to which these estimates were above or below
average in terms of visitor numbers according to the UK Leisure Day Visit survey. Applying
this scaling factor to the prediction of arrivals during a standard day period takes account of
the uplift exerted by surveying in high-visitation months (or the drag exerted by surveying in
low-visitation months). A simple example illustrates the procedure. First consider the
percentage of visitors which would arrive at forest locations each month if there was no
monthly variation in visitation levels. This value would be 100/12 = 8.3%. In reality,
according to the UK Day Visit Survey, 11% of annual visits to forests occur in July. Now
assuming that all interviews at a given site were conducted in July and that, based upon the
model predictions, some 200 visitor parties arrive at this site per day, this estimate would be
elevated relative to the annual average number of visits because the survey was conducted at
the most popular time of the year. Multiplying the estimate of 200 visitor parties by the
number of days in July (31) gives a monthly prediction for July of 6200 which represents 11%
of the annual visitor according to the Day Visit Survey. Hence multiplying 6200 by 9.091
(100/11) gives an annual estimate of 56,363 visitors. This estimate is adjusted for the period
in which the survey took place.

Table 26: Comparison of Forestry Commission and model estimates of annual visits to five
woodlands: Aggregation using UK Day Visit Survey data.

Site name Forestry Commission estimate
of the number of party visits

per annum.

Predicted number of party visits per
annum based on UK Day Visit Survey
data regarding annual distribution of

visits
Beechenhurst 72845 20603
Blidworth Woods 63849 82644
Chopwell 33708 20950
Mabie 51704 21403
Symonds Yat 77525 15177
Total:- 299631 160777
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Consideration of Table 26 shows that aggregation on the basis of UK Day Visit Survey
information results in model estimates rather lower to those provided by the Forestry
Commission, the ratio between these two sets of estimates being 0.54. In general this confirms
that there is fair agreement between the Forestry Commission estimates of arrivals and our
own predictions once they are adjusted for trends in day visits across the year, but that the
upscaling methodology based on the UKDVS provides little improvement over the more
simple scaling illustrated in Table 24.  An examination of the rankings of sites in Table 26
shows that there is still some substantial disagreement between our predictions and the
estimates of the Forestry Commission. For example, we predict that the lowest numbers of
visitors will be at Symonds Yat whereas this location has the highest number in the Forestry
Commission estimates. Therefore, a third approach as a basis for aggregation was also
investigated.

Figure 24: Distribution of survey effort by month
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The third approach devised to address the aggregation issue involved incorporation of the
temporal distribution of survey effort directly within the model. Figure 24 describes, for the
entire sample of observations, the distribution of survey effort across the year.

As can be seen from Figure 24, survey effort varies highly significantly across the year with
the summer months being by far the most prevalent. In order to incorporate this within our
models variables were created detailing, for each site, the proportion of total survey effort
undertaken in each month of the year. Statistical investigation indicated that there was too few
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surveys (and too little corresponding variation) within the months from October to April to
justify their separate inclusion and so only separate variables for each of the months May to
September were included within revised models of visitor interview numbers (i.e. coefficients
on these variables, measured as proportional survey effort in each of the latter months, reflect
departures from the base case of interviews outside this period). These models were estimated
and provided the coefficient values illustrated in Figure 25. These parameters estimate the
marginal impact on interviews that a single unit of survey effort has in each month. Hence,
compared with the Oct-Apr average, 18% more interviews per hour are achieved in May, 28%
more in June and so forth. These seasonal differences are smaller than might be expected,
although the model is measuring seasonality in interviews achieved, not in numbers passing;
there is a constraint on the number that can physically be interviewed per hour, and this is not
accounted for here as the models do not include information on unsurveyed visitors.
Furthermore, surveys in winter months may have been at busier times to avoid interviewers
standing idle for long periods. These surveys were also less likely to have been at sites that
have significant seasonality, because managers might have been less interested in hosting
winter surveys where there are relatively few winter visitors. For all these reasons, we would
expect the estimated coefficient to be smaller than average seasonality in visitor numbers.

Figure 25: Model parameter coefficients for variables measuring the proportion of survey
effort expended in each of the months shown.

Examining Figure 25 we can see that, as expected, all coefficient values are positive,
reflecting the higher number of visits taking place in these months as opposed to other periods
in the year. The pattern of these values also seems reasonable. Although none of these
variables were significant at the 5% level, the fact that their values conform to expectations
and control for seasonality effects in survey timing meant that their inclusion within the
multilevel model predicting interview numbers was justified on the grounds that it is likely to
provide a superior basis for aggregation to annual visitor predications. Estimates from a model
including these parameters were adjusted as set out at the start of this section (e.g. allowing
for visitors during the survey period who had not been interviewed) but the aggregation to
annual visits was achieved by simply multiplying the derived 24 hour predictions of arrivals
(which had been adjusted for the seasonality of the survey period) by 365.25. Resultant
estimates of arrivals are presented in Table 27.
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Table 27: Comparison of Forestry Commission and model estimates of annual visits to five
woodlands: Aggregation using models with predictors defining the proportion of survey effort
falling in each of the months May to September.

Site name Forestry Commission
estimate of the number

of party visits per
annum.

Predicted number of party visits
per annum based on UK Day
Visit Survey data regarding
annual distribution of visits

Beechenhurst 72845 45755
Blidworth Woods 63849 57211
Chopwell 33708 27688
Mabie 51704 20521
Symonds Yat 77525 50142
Total:- 299631 201317

The estimates detailed in Table 27 are encouraging and the degree of agreement is similar to
that obtained from the work with the Day Visit Survey data (as detailed in Table 26). The
overall correspondence between Forestry Commission and model derived estimates of arrivals
has a ratio of  0.67. The value of this ratio is improved compared to that for our previous
analysis, and there is a substantial improvement in the consistency of predictions in terms of
the ranking of sites. The top three sites and lower two sites are consistently ranked across the
two sets of estimates suggesting that this approach allows the ability of the underlying models
to distinguish between high and low visitation models (as noted with respect to Figure 22) to
be preserved. Given the acknowledged uncertainty with regard to the Forestry Commission
estimates we feel that this is a satisfactory finding.

4.1 Disaggregation of predicted annual visits by visitor outset zone.

The annual visitor estimates detailed above are derived from our interview prediction model
which takes as its base unit the number of party visits generated from each zone. This model
can therefore be used to provide per annum estimates for each zone. Figure 26 illustrates
results for area around the site at Salcey while Figure 27 repeats this analysis for the entire
area of Great Britain. As expected, the highly significant travel time variable is reflected in the
relative concentration of visitors around the site. This provides a useful insight into the
demand characteristics of particular sites.
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Figure 26: Annual party visits to Salcey disaggregated by outset zone: Area around the site



76

Figure 27: Annual party visits to Salcey disaggregated by outset zone: All areas across Great
Britain.
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5. PREDICTING THE IMPACT OF ADDING FACILITIES AT FORESTRY
COMMISSION WOODLANDS.

The estimated models are also useful for investigating changes to the stock of Forestry
Commission woodlands such as the addition of new sites or facilities. To test the latter five
sites were chosen for analysis, site selection being determined so as to cover the geographic
extent of Great Britain. Locations of these sites are indicated in Figure 28.

Figure 28: Location of five Forestry Commission woodlands used in facility impact testing.
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Table 28: The impact upon predicted visitor numbers of adding a visitor centre at five sites.

No allowance made for
seasonality  of survey effort

Allowance made for seasonality
of survey effort

Site
No.

Site Name

Predicted
number of
daily party

visits without
visitor centre

Predicted
number of
daily party
visits with

visitor centre

Predicted
number of
daily party

visits without
visitor centre

Predicted
number of
daily party
visits with

visitor centre

64 Glentress 163 309 147 286
72 Hamsterley 47 90 103 194
110 Queen Elizabeth 107 202 168 318
136 Wakerley 153 291 181 343
151 Woodend 199 378 142 268

A number of models were estimated for the above sites, looking at the presence or absence of
a visitor centre. Results from these analyses are presented in Table 28

The findings detailed in Table 28 suggest that the presence of a visitor centre will have a
substantial positive impact upon the number of visits  (although these values have not be
corrected to account for missed visitors or invalid postcodes). However, these findings should
be treated with caution as they infer that the general relationship between a facility, like a
visitor centre, derived from the overall sample, will apply to the addition of a new centre in a
wood which previously had none. This may be erroneous because the presence of a visitor
centre in the existing set of sites may proxy other characteristics of those sites which may not
be endowed by simply building a new visitor centre in a given woodland. For example, if sites
which presently have visitor centres are, say, bigger, more diverse, have other facilities or be
located near to major population densities, then the mere construction of a visitor centre at a
new site may well not endow that site with such characteristics. In such cases the above
findings may well represent over-estimates of the impact of such facilities.

Despite the fact that the findings from this part analysis should be treated with caution, they
do illustrate how the models we have presented here could be used to test what impact the
introduction of new visitor facilities, or the removal of existing ones, may have at existing
sites. They also illustrate how the models could be used to predict visitor numbers at ‘new’
sites for which no survey information is available. To use the models for new sites it would, of
course be necessary to estimate travel time values to each site from outset zones. Hence, if the
parameter coefficients presented in the models here were used in this prediction process, it
would be necessary to ensure that any GIS methodology adopted to provide these new
estimates produced comparable travel time estimates to our own. This is particularly
important given that the estimated travel time to each site has been shown to be by far the
most dominant predictor of surveyed visitor numbers. Aside from this issue it would also be
important that the original data matrix used in the development of these models was available.
If this information was at hand, it would be possible to make predictions of visitor numbers by
multiplying the parameter coefficients presented in the tables above by the corresponding
values of the variables in the data matrix, and then summing the product of this multiplication
for each site. An alternative to this process would involve the re-estimation of models. In the
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future, this further model development may be desirable as information from the 2001 UK
Census of Population becomes available, the nature and form of Forestry Commission visitor
surveys changes, and new methodologies for parameter estimation (particularly associated
with the development of simulation methods in the field of multilevel modelling) become
available. Further model development will also allow some of this issues identified in this
report, such as the relationship between model performance and visitor type mix, to be
investigated more fully.

6. TRAVEL COST VALUES

Part Two of this report discusses consumer surplus and willingness to pay measures of the
recreational value of trips to woodlands. However, a further aspect of such values concerns
the travel cost values incurred by visitors for such trips. The models estimated in this research
are  amenable to these calculations as the travel time variable can readily be replaced by travel
cost estimates (although the critique provided by Randell (1994) and discussed above, is
relevant here).

In calculating travel cost allowance was made for both travel expenditure and travel time
values. The procedure used was as follows:

(i) To convert travel time to the cost of travel time: Travel time (as calculated in the
GIS) from any outset location was multiplied by the regional hourly wage rate
(taken from CSO, 1998) appropriate to that outset location. This value was then
multiplied by one-third following the work of Cesario (1976) as applied to
woodlands by Benson and Willis (1992)

(ii) To calculate travel expenditure: Travel distance was calculated as the product of
travel time and an assumed average speed of 40mph. Travel expenditure was then
calculated by multiplying travel distance by average running costs per mile
obtained from the Automobile Association (figures for 1998). Note that these
values will tend to slightly over-state marginal costs for rural trips when fuel
consumption is better than in the urban cycle.

(iii) To calculate travel cost per group from each outset location: The travel cost value
obtained at (i) was added to the travel expenditure value derived at (ii).

(iv) To calculate travel cost per outset location: The value derived at (iii) was
multiplied by the total number of parties arising from each outset location

(v) To obtain the total value of travel costs per site: The values estimated at (iv) were
summed on a per site basis.

(vi) To calculate the average cost of a group visit: the value estimated at (v) was
divided by the number of visitors to the site.

The above calculation was carried out separately for all visitors, day-trippers and
holidaymakers to yield the values detailed in Table 29. The values in Table 29 correspond to
one way travel only, and hence the subsequent valuation exercise they were doubled to
encompass the entire cost of trips. It should be noted that, for holidaymakers, only a
proportion of the full travel costs are relevant to the woodland visit. The final column in this
table details all visitor values estimated from a benefit transfer analysis in which the site in
question is omitted and values estimated from the remaining dataset. As per the comparable
analysis for visitor numbers given in Table 15, this final column conforms reasonably well to
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the full-information result. As expected travel costs are higher for holidaymaker than day-trip
visitors, the former reflecting travel from home to the woodland area.
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Table 29: One way travel cost values for all visitors, day-tripper and holidaymakers
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The values detailed in Table 29 are travel costs rather than consumer surplus values. However
they may be used with the predicted annual visitor numbers we produced from the 5 sites for
which Forestry Commission estimates were available in order to estimate the travel cost value
placed by visitors on each site. Recall that we used 3 different methods to gross up 24 hour
model predictions to annual values. The first (Method 1) involved simply multiplying the
predictions by the annual values and correcting for invalid interviews. The second
methodology (Method 2) fitted the predicted values from the model to the monthly
distribution of visitors to forest sites based on data in the UK day visits survey. The third
methodology (Method 3) involved modelling the period of survey effort at each site by adding
a new suite of explanatory variables to the model. For the purposes of comparison, all three
methodologies were used to produce the travel cost values detailed in Table 30 below.

Site name Travel cost estimated
from Method 1

Travel cost estimated
from Method 2

Travel cost estimated
from Method 3

Beechenhurst        £548,838        £513,426     £1,140,214
Blidworth Woods        £760,189        £799,994        £553,802
Chopwell        £187,467        £219,976        £290,724
Mabie      £1,062,744      £1,072,718     £1,028,512
Symonds Yat        £364,380        £339,947     £1,123,180
Total:-      £2,923,619      £2,947,606     £4,136,432

Table 30: Estimated travel costs to five woodlands using three methods of converting model
predictions to annual visitor numbers.

As would be expected from the differences in the predictions of annual group visits made
from the three models, there is considerable variability between methods in the travel cost
estimates made for each site. The lowest overall costs are produced from Method 1. Similarly,
the finding that Method 2, including seasonality variables in the modelling process, gave the
highest total estimated costs. The variability in costs within sites across the three methods is a
function of how many parties at each site each method predicted. For example, Method 2
predicted 21,204 party visits for Mabie, whilst method 1 predicted that 21,403 parties would
visit the site annually. This discrepancy is reflected in the rather different travel cost
(£1,072,718 and £1,062,744 respectively) that the two methods placed on each site. Observed
variations in travel costs between sites that have been estimated using the same method are a
function of both the number of predicted visits to each site, and the travel cost for the site
taken from Table 29. For example, Mabie has a large number of holidaymaker visitors coming
some distance to reach the site, and hence has a mean cost of £50.12 per visit. On the other
hand, the mean cost for Blidworth Woods is just £8.96.

It should be stressed once again that these value are travel costs rather than measures of the
consumer surplus that visitors will place on each woodland. For discussion of the latter we
move to Part Two of this report.
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Part Two:
Estimating the value of informal recreation

at British woodlands:
A multilevel meta-analysis.

by
Ian J. Bateman and Andrew P. Jones

Overview
This second part of the report presents a variety of meta analysis models of woodland
recreation benefit estimates, contrasting conventionally estimated models with those provided
by novel, multi-level modelling (MLM) techniques (Goldstein, 1995). Our conventional
models suggest that studies carried out by certain authors are associated with unusually large
residuals within our meta-analysis. However, the MLM approach explicitly incorporates the
hierarchical nature of meta-analysis data, with estimates nested within study sites and authors.
Allowing for this reveals that these residuals are not a significant determinant upon values,
suggesting that, at least in this aspect, estimates may be more robust than indicated by less
sophisticated models. However, previously noted differences in benefit estimates between
alternate valuation methods persist across our various analyses and remain a cause for
concern.

1.  Introduction
The past two decades have witnessed an increasing reliance upon cost-benefit analysis (CBA)
as a tool for project appraisal and to inform decision making. In the UK, a typical example of
this trend is provided by the 1995 Environment Act which brought into being the
Environment Agency (EA) and imposed 'general duties' upon the Agency to take account of
the costs and benefits arising from its policies (H.M. Government, 1995). For many agencies,
particularly those which have an explicitly environmental or public goods remit, the
assessment of benefits necessitated by adopting CBA approaches has led to a growing interest
in tools for the monetary valuation of preferences for environmental goods and services.
Consequently, expressed preference methods such as contingent valuation (CV) and conjoint
analysis (CA) together with revealed preference techniques such as hedonic pricing (HP) and
individual and zonal travel cost (TC) have enjoyed an unprecedented increase in application.
However, such applications themselves incur both direct and time related costs. Consequently
the proliferation of these studies has coincided with increased interest in the potential for
benefit transfer.

Rosenberger and Loomis (2000) define benefit transfer as 'the application of values and other
information from a "study" site with data to a "policy" site with little or no data' (p1097). A
number of approaches to undertaking transfers are available2 including simple transfer of
unadjusted point estimates, transfer of benefit demand functions and meta-analysis. As the
simplest approaches cannot incorporate the characteristics of a given site within the transfer
exercise, considerable attention is being given to the development of methods for transferring
benefit demand functions (Loomis, 1992; Bergland et al., 1995; Loomis et al., 1995; Downing
and Ozuna, 1996; Kirchhoff et al., 1997; Brouwer and Spaninks, 1999; Brouwer and
                                                          
2 For reviews of the issues raised by benefit transfer applications see Brookshire and Neill (1992), OECD (1994),

Pearce and Moran (1994), Bergland et al., (1995) and Desvousges et al., (1998).
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Bateman, 2000). However, results are mixed with some studies reporting considerable success
while others indicate abject failure. Given this and the empirical difficulties of such studies, a
substantial literature has developed regarding the applications of meta-analysis techniques as a
basis for benefit transfer.

Meta-analysis is the statistical analysis of the summary findings of prior empirical studies for
the purpose of their integration (Glass, 1976; Wolf, 1986). Developed over the last thirty
years, it has most commonly been applied in the fields of experimental medical treatment,
psychotherapy, and education. Typically, these experiments took place in well-controlled
circumstances with standard designs. Deviation from such specifications increases the problems
with any cross-analysis (Glass et al., 1981)3.

Despite problems, meta-analysis offers a transparent structure with which to understand
underlying patterns of assumptions, relations and causalities, so permitting the derivation of
useful generalizations without violating more useful contingent or interactive conclusions
(Hunter et al., 1982). It permits the extraction of general trend information from large datasets
gleaned from numerous studies which would otherwise be difficult to summarize. In
comparison with other benefit transfer techniques, Rosenberger and Loomis (2000) identify
three advantages of adopting a meta-analysis approach: (i) it typically collates information
from a greater number of studies, (ii) it is relatively straightforward to control for
methodological differences between valuation source studies, (iii) benefit transfer is readily
effected by setting explanatory variable values to those at the desired target site be it a
previously surveyed, unsurveyed or just proposed (i.e. currently non-existent) site.

Table 1:  Meta-analysis studies in environmental and resource economics.

Subject area Study authors

Recreation benefits Bateman et al., (1999b, 2000), Markowski, et al., (2001),
Rosenberger and Loomis (2000), Shrestha and Loomis
(2001), Smith and Kaoru (1990a), Sturtevant et al. (1995),
Van Houtven et al., (2001), Walsh et al. (1990, 1992)

Price elasticity in TC studies Smith and Kaoru (1990b)
CV versus revealed preference Carson et al. (1996)
Multiplier effects of tourism Baaijens, et al. (1998), Van den Bergh et al., (1997, Ch9)

Wetland functions Brouwer et al., (1999), Woodward and Wui (2001)
Groundwater quality Boyle et al., (1994), Poe et al., (2001)

Price elasticity for water Espey et al., (1997)
Urban pollution valuation Smith (1989), Smith and Huang (1993), Smith and Huang

(1995), Schwartz (1994), Van den Bergh et al., (1997,
Ch10)

Noise nuisance Button (1995), Nelson (1980), Van den Bergh et al.,
(1997, Ch4)

Congestion and transport Button and Kerr (1996), Van den Bergh et al., (1997,
Ch13 and 14), Waters (1993)

Visibility and air quality Desvousges et al., (1998), Smith and Osborne (1996)
Endangered species Loomis and White (1996)

Valuation of life estimates Van den Bergh et al., (1997, Ch11)

                                                          
3 Meta-analyses also face the problem that studies published in the available literature may over represent that subset

of all studies which produce ‘positive’ or significant results if studies yielding ‘negative’ or non-significant
findings tend not to be published.
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Table 1 extends reviews by Van den Bergh et al., (1997) and Smith and Pattanayak
(forthcoming) to provide a brief summary of studies in this area. The empirical applicability of
meta analysis to any given context is determined by the number, quality and comparability of
studies available to the researcher (Desvousges, et al., 1998). Here there is a difficult trade-off
between the desire to extend the remit of analysis so as to enhance the applicability of results
to different goods, provision changes, locations and contexts, and the consequent increase in
data demands which such extensions entail. For example, Rosenberger and Loomis (2000)
consider a wide range of outdoor recreation activities (10 separate categories ranging from
fishing to rock climbing to snowmobiling) across a very extensive locational remit, the US
and Canada. This analysis requires a large valuation dataset and their study utilizes 682 value
estimates from 131 separate projects. By contrast the meta-analysis presented in this paper
considers just one type of activity, recreation in open-access woodlands, and just one
geographical area, Great Britain, a land area just over 1% the size of that considered by
Rosenberger and Loomis. Our analysis is initially restricted just to measures obtained by
application of the CV method yielding a dataset of 44 value estimates from 11 studies. A
second analysis supplements these data with results obtained from 6 TC studies, bringing the
total number of value estimates to 77. While this is less than the size of the Rosenberger and
Loomis dataset (reflecting the fewer number of studies conducted in Great Britain) the much
smaller geographical remit of our study, and its focus upon just one activity, mean that data
are placed under considerably less stress, enhancing the reliability of resultant benefit transfer
estimates. The disadvantage of this focus is that our results are not readily applicable to other
activities or to areas outside Great Britain.

Full details of the dataset assembled for this research are given in Appendix B to this report.

The first meta-analysis presented here is conducted using conventional generalized linear
model (GLM) regression techniques (McCullagh and Nelder, 1989). However, the second and
third analyses apply multilevel modelling (MLM) techniques (Goldstein, 1995) to the full
dataset of observations. For further information on MLM readers should refer to the Goldstein
book or refer the multilevel.ioe.ac.uk website. Because the MLM approach allows the
researcher to explicitly incorporate potential nested structures within the data, it is possible to
examine a number of key issues and criticisms of both meta-analysis and valuation studies.
For example, it is possible to control for the fact that the number of estimates provided is not
constant across authors4 (as in the case presented here) such that a conventional GLM analysis
may give results which are heavily weighted towards the most prolific authors. Another
important issue concerns whether different authors consistently implement valuation
techniques in a manner which is liable to lead to upward or downward pressure upon resultant
valuation estimates. The detection of evidence of these problems would constitute a
substantial criticism of methods for valuing preferences for non-market goods.

2. The recreational value of forests: Background and data sources
In terms of land use, British forestry has always been the poor cousin of agriculture. A history of
deforestation meant that, by 1900, only 4% of England and Wales and 2% of Scotland and
Ireland was forested, by far the lowest level in Europe (Rackham, 1976). The establishment of
the FC in 1919 has done much to reverse this trend and over 10%5 of the land area of Great
Britain is under woodland today. The FC woodland, the largest single source of open-access

                                                          
4 One could identify a number of possible hierarchies for example value estimates could be nested within studies

and then within authors. As discussed subsequently, they can also be 'cross classified' when different authors
conduct studies at the same (as well as differing) forest sites.

5 This decomposes into 14.7% of Scotland, 12.0% of Wales and 7.4% of England. However, this is still well below
an EU average of about 25% of land area under forestry (FICGB, 1992).
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land, generates approximately 24-32 million recreational visits per annum (NAO, 1986;
Benson and Willis, 1990; 1992), and produces a national aggregate consumer surplus value
estimated at between £40 million (Bateman, 1996) and well over £50 million (Benson and
Willis, 1992) at current prices. From an economic perspective, the recreational value of forestry
is therefore one of its most important benefit streams.

The initial stage of any meta-analysis involves a survey of the relevant literature to identify
potential base data studies. Table 2 presents summary details from some 30 studies of UK
woodland recreation value yielding over 100 benefit estimates.

Table 2:  Studies of open-access woodland recreation value in Great Britain.

Value
type

Recreation
value unit

Valuation
method

No. of
studies

Date
conducted1

No. of
value

estimates

Value range
(£, 1990)

(m = million)

Use Per person per
visit.

CV 8a 1987 – 1993 28 £ 0.28 - £ 1.55

Use +
option

Per person per
visit.

CV 3b 1988 – 1992 16 £ 0.51 - £ 1.46

Use Per person per
visit.

ZTC 3c 1976 – 1988 17 £ 1.30 - £ 3.91

Use Per person per
visit.

ITC 3d 1988 – 1993 16 £ 0.07 - £ 2.74

Use Per person per
year

CV 3e 1989 – 1992 7 £ 5.14 - £ 29.59

Use Per household
capital2

CV 3f 1990 3 £ 3.273 - £ 12.89

Use FC forests/
conservancy4

TC 1g 1970 13 £0.1m - £1.1m

Use Total UK value TC 6h 1970 – 1998 6 £6.5m - £62.5m

- All studies - 30 1970 - 1998 106 -

Notes:
1 = Dates refer to the year of study survey rather than publication date.
2 = These studies use a once-and-for-all willingness to pay per household question.
3 = We have recalculated this figure by including those who refused to pay as zero bids.
4 = The FC at the time divided the area of Great Britain into a number of Forest Conservancies and large forests to which

these estimates relate.
Study references:
a = Whiteman and Sinclair (1994); Hanley and Ruffell (1991); Bishop (1992); Willis and Benson (1989); Hanley (1989); Willis

et al (1988); Bateman and Langford (1997); Bateman (1996).
b = Bishop (1992); Willis and Benson (1989); Willis et al (1988)
c = Benson and Willis (1992); Hanley (1989); Everett (1979)
d = Willis and Garrod (1991); Bateman (1996); Bateman et al., (1996)
e = Whiteman and Sinclair (1994); Bishop (1992); Bateman (1996)
f = Hanley and Munro (1991); Hanley and Ecotec (1991); Hanley and Craig (1991).
g = H.M. Treasury (1972)
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h = H.M. Treasury (1972); Grayson et al (1975); NAO (1986); Willis and Garrod (1991); Benson and Willis (1992); Bateman
(1996).

An initial analysis focused solely upon those estimates of per person per visit recreation value
obtained from applications of the CV method. Here survey respondents, typically interviewed
on-site, were asked to state their willingness to pay (WTP) for the recreational value of the
forests concerned6.  Table 2 indicates that there are 8 studies yielding 28 estimates of the
direct 'use value' of the recreational services provided by forests. Three studies also asked
respondents about their WTP for both the present and possible future use (or 'option value';
Weisbrod, 1964; Pearce and Turner, 1990) of forests providing a further 16 estimates of this
wider recreational value. In total therefore, these studies yield 44 value estimates7.

Table 3:  Per person per visit woodland recreation value estimates disaggregated by study author and
valuation/estimation method

Method Whiteman
& Sinclair

Hanley
et al.

Bishop Willis
et al.

Bateman
et al.

Everett All

CV 3
0.78

(0.66 -
0.93)
[0.14]

6
1.30

(0.85 -
1.55)
[0.27]

4
0.89

(0.46 -
1.46)
[0.46]

28
0.71

(0.28 -
1.29)
[0.27]

3
1.08

(0.47 -
1.55)
[0.55]

0
--
--
--

44
0.84

(0.28 -
1.55)
[0.36]

ITCols 0
--
--
--

0
--
--
--

0
--
--
--

6
1.46

(0.47 -
2.74)
[0.84]

3
1.35

(1.07 -
1.58)
[0.26]

0
--
--
--

9
1.42

(0.47 -
2.74)
[0.68]

ITCml 0
--
--
--

0
--
--
--

0
--
--
--

6
0.57

(0.07 -
1.13)
[0.47]

1
1.20

(1.20 -
1.20)
[--]

0
--
--
--

7
0.66

(0.07 -
1.20)
[0.49]

ZTC 0
--
--
--

1
2.14

(2.14 -
2.14)
[--]

0
--
--
--

15
2.53

(1.58 -
3.91)
[0.66]

0
--
--
--

1
1.30

(1.30 -
1.30)
[--]

17
2.43

(1.30 -
3.91)
[0.71]

All 3
0.78

(0.66 -
0.93)
[0.14]

7
1.41

(0.85 -
2.14)
[0.40]

4
0.89

(0.46 -
1.46)
[0.46]

55
1.27

(0.07 -
3.91)
[0.95]

7
1.21

(0.47 -
1.58)
[0.38]

1
1.30

(1.30 -
1.30)
[--]

77
1.24

(0.07 -
3.91)
[0.83]

Cell contents are as follows:

Number of estimates
Mean value (£/person/visit)
(Range: minimum to maximum value)

                                                          
6 Note that CV studies can be adapted to ask either WTP or willingness to accept compensation questions in

respect of either gains or losses of the resource concerned (Mitchell and Carson, 1989), although only the WTP
format was used in the studies concerned.

7 Further details of these studies are provided in Bateman (1996) and Bateman et al., (2000).
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[StDev of values]

A second analysis was conducted by expanding the dataset to include a further 23 per person
per visit value estimates obtained from TC studies. These estimates can be further subdivided.
There are 16 individual TC estimates of which 9 use ordinary least squares (OLS) estimators
(hereafter identified as ITCols; these are liable to lead to over-estimates of benefits due to an
inability to reflect the truncation of non-visitors within an on-site TC survey sample). A
further 7 use maximum likelihood (ML) estimators8 (identified as ITCml studies; these
explicitly model the truncation of non-visitors and are not upwardly biased in this respect).
There are also 17 zonal TC (ZTC) estimates (all of which use OLS estimators).

All TC estimates refer solely to recreational use values alone and the addition of these to our
CV values allow us to examine the influence of using different valuation methods upon the
estimates obtained. Table 3 reports summary descriptive statistics for the various per person
per visit values which constitute our wider dataset. Here estimates are disaggregated by both
study author and the valuation method employed

Table 3 highlights two important features of the dataset that are the subject of subsequent
investigation. First, the data is dominated by estimates derived from studies conducted by
Willis et al., reflecting their leading role in this field. Second, while the number of estimates is
too small to permit calculation of confidence intervals, values produced using the ZTC
method appear to be substantially higher than those from other approaches. This may be
attributed to a number of causes including the use of OLS predictors in such studies and the
systematic upward bias in most zonal estimates of travel time and distance (and hence
consumer surplus) recently identified by Bateman et al., (1999a). We return to this issue
subsequently.

3. Conventional GLM based meta-analyses

3.1. GLM meta-analysis of the CV per person per day values

Our initial meta-analysis focused upon the 44 per person per visit value estimates collected using
the CV method. Examination of these studies produced a number of variables which might
influence estimated values. These variables are:

Option: 1 = use value plus option value requested in WTP question, 0 = use value alone;

Elicit (WTP elicitation method): 1 = open ended (OE), 2 = iterative bidding (IB), 3 =
payment card (PC), 4 = high range payment card (PCH)9, 5 = dichotomous choice
(DC);

OE (recoding of the Elicit variable): 1 = open ended elicitation method used, 0 = other;

Forest: 20 categories identifying each of the forests included in at least one of the
studies;

Year: Continuous variable; the number of years before (negative) or after (positive) the
base year (1990);

                                                          
8 For a discussion of ML estimators see Maddala (1983).
9 Bateman et al., (forthcoming) contrast a standard with a high range payment card.
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Author variable: 1 = Whiteman and Sinclair, 2 = Hanley et al., 3 = Bishop, 4 = Willis
et al., 5 = Bateman et al.

Economic theory and empirical regularities observed in earlier meta-analyses provide a number
of expectations regarding the potential impact of these variables upon stated WTP values.
Clearly Option would be expected to be positively related to higher levels of WTP as it defines
cases where respondents were asked to consider a wider set of values than just present
recreational forest use. Economic theory also has clear expectations regarding the Elicit variable.
A simple open ended (OE) WTP question, such as 'What are you willing to pay?' is liable to
free-riding behaviour, leading to understatement of WTP relative to the incentive compatible
estimates from dichotomous choice (DC) approaches (Hoehn and Randall, 1987; Carson et al.,
1999)10. This in turn will lead to the OE variable being associated with lower levels of stated
WTP.

The nominal Forest variable is included to identify any influences that variations in the nature of
individual sites (e.g. facilities) may have upon stated WTP. Year is open to interpretation as it
might reflect perceived changes in the availability or desirability of open-access recreational
goods, or changes in the types of data collected or estimators and methods employed over the
period spanned by the studies. This is also addressed by Author which is included to allow for
possible differences in study design and application across researchers.

The analysis was conducted using the generalized linear modelling (GLM) approach set out by
McCullagh and Nelder (1989). This permits direct incorporation of nominal variables such as
Elicit and Author in a way which yields estimates which are comparable with the use of
separate binary variables for each category, but which is more efficient than adopting this
explicit approach. Coefficient estimates for each category are interpreted normally.

Collinearity between the Author and Forest variables was too high to permit their simultaneous
inclusion within a single model (e.g. all studies by Hanley et al., were conducted in Aberfoyle
forest). Inspection of the relationship between the separate effects of these variables upon stated
WTP suggested that Author provided the more interesting insight into the process of stated value
formation. Hence, this variable was modelled, with analysis of Forest being reported
subsequently. Analysis also showed that the variable Year gave a small, positive but
statistically insignificant (p>0.2) and the variable was omitted from the present analysis. Tests
indicated that a linear model performed better than other functional forms and the final model
is given as Table 411.

Table 4: GLM meta-analysis of CV estimates of per person per visit recreation values (£, 1990)
for open-access woodland in Great Britain.

Variable Coefficient 95% CI p
Constant    1.2822 (1.082 - 1.482) 0.000
Option 0.2094 (0.135 - 0.284) 0.000

Elicit1 1 (OE) -0.3313 (-0.579 - -0.084) 0.013
2 (IB) -0.2980 (-0.681 – 0.085) 0.136
3 (PC) 0.0753 (-0.172 – 0.323) 0.554
4 (PCH) 0.5820 (0.146 – 1.018) 0.013

                                                          
10 While the DC method is incentive compatible, whether or not it is in practice also demand revealing (i.e.

produces unbiased estimates of true WTP) is an ongoing source of debate (Green et al., 1998; Carson et al.,
1999).

11 Bateman et al., (1999a) use a reduced form of the model reported in Table 4 in their GIS based benefit transfer
analysis of woodland recreation values.
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Author2 1 (Whiteman & Sinclair) 0.0385 (-0.186 – 0.263) 0.739
2 (Hanley et al.) 0.3652 (0.147 – 0.383) 0.002
3 (Bishop) -0.0584 (-0.265 – 0.149) 0.584
4 (Willis et al.) -0.2405 (-0.382 - -0.099) 0.002

Notes on above table:
1. Base case (category 5) = DC
2. Base case (category 5) = Bateman et al.
R2 = 0.716; n = 44

Table 4 shows the Option variable provides the strongest influence upon stated WTP.
Respondents facing a 'use plus option value' question stated very significantly higher WTP sums
than those facing 'use value alone' questions; a result which conforms well with prior
expectations. The Elicit variable shows that two elicitation methods produce estimates which
differ significantly from others in the dataset12; OE values being substantially lower than the
base case (the incentive compatible DC approach) with high range payment cards being,
unsurprisingly, higher than all other approaches (although this latter result relies upon just a
single value estimate). Again these results conform well with prior expectations. Two of the
Author categories are also significant: category 2 (Hanley et al.), which yields recreation value
estimates that are higher than average, whilst category 4 (Willis et al.) yields lower than average
estimates. This provides support for the contention that reported valuation estimates are partly
dependent upon the researcher carrying out the study.

3.2. GLM meta-analysis of the CV and TC per person per day values
The analysis was subsequently expanded by the addition of the 23 estimates of per person per
visit woodland recreation values obtained using TC methods. In addition to increasing the
total observations to 77, this also adds a new categorical explanatory variable, Method, which
defines the four method/estimation combinations used (CV, ITCols, ITCml and ZTC, of which
the CV studies are held as the base case in subsequent analyses)13. Both economic theory and
empirical studies suggest that the categories of Method may be associated with differing
recreation value estimates. This is because, while the CV approach yields direct Hicksian
welfare measures of WTP, TC methods provide Marshallian consumer surplus estimates. The
relationship of these measures depends upon the relative shape of the underlying compensated
and uncompensated demand curves for the goods and provision changes concerned (Just et al.,
1982; Boadway and Bruce, 1984). Carson et al., (1996) review 83 studies from which 616
comparisons of CV to revealed preference (RP; including TC) estimates are drawn, yielding a
whole sample mean CV:RP ratio of 0.89 (95% CI = 0.81 to 0.96), i.e. CV estimates were
found to be significantly lower than TC values.

The Elicit and OE variables were omitted from this analysis as they do not apply to the TC
studies. Models were estimated using GLM techniques, allowing for variation across
categorical variables14. Table 5 details results for a number of model specifications. In each
case, tests of functional form indicate that the linear specification performs roughly as well as
other standard forms and is retained for comparability and ease of interpretation.

                                                          
12 Elicitation type 6 (DC) is used as the base category here.
13 In addition we have one further Author category (Everett) and one extra forest study site.
14 Equation (A1) in Bateman et al., (2000) details such a model showing effects for individual forests.
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Table 5: GLM meta-analyses of CV and TC estimates of per person per visit recreation values
(£, 1990) for open-access woodland in Great Britain.

Models
A B C D E F G

Intercept 1.1980
(0.1057)
[11.34]
{0.000}

1.2781
(0.1177)
[10.86]
{0.000}

0.8368
(0.0764)
[10.95]
{0.000}

0.7523
(0.0852)
[8.83]

{0.000}

0.6687
(0.0862)
[7.75]

{0.000}

0.6796
(0.0886)
[7.67]

{0.000}

0.7697
(0.0910)
[8.46]

{0.000}
Option -0.3489

(0.2338)
[-1.49]
{0.140}

0.1902
(0.1521)
[1.25]

{0.215}

0.2717
(0.1436)
[1.89]

{0.063}

0.2626
(0.1469)
[1.79]

{0.078}

0.3414
(0.1434)
[2.38]

{0.020}
Forest:
Cheshire

-0.3780
(0.3839)
[-0.98]
{0.328}

-0.3883
(0.3808)
[-1.02]
{0.311}

-0.4029
(0.2163)
[-1.86]
{0.067}

-0.4153
(0.2203)
[-1.88]
{0.064}

-0.3962
(0.2109)
[-1.88]
{0.065}

Loch Awe 0.5653
(0.4881)
[1.16]

{0.251}

0.6015
(0.4847)
[1.24]

{0.219}

0.4379
(0.2760)
[1.59]

{0.117}

0.4212
(0.2812)
[1.50]

{0.139}

0.4154
(0.2690)
[1.54]

{0.127}
Aberfoyle 0.4445

(0.3104)
[1.43]

{0.156}

0.3644
(0.3124)
[1.17]

{0.247}

0.5491
(0.1799)
[3.05]

{0.003}
Method1:

ITCols
0.5876

(0.1854)
[3.17]

{0.002}

0.6722
(0.1884)
[3.57]

{0.001}

0.8005
(0.1767)
[4.53]

{0.000}

0.7910
(0.1805)
[4.38]

{0.000}

0.7994
(0.1727)
[4.63]

{0.000}
ITCml -0.1811

(0.2062)
[-0.88]
{0.383}

ZTC 1.5973
(0.1447)
[11.04]
{0.000}

1.6818
(0.1490)
[11.29]
{0.000}

1.6988
(0.1378)
[12.33]
{0.000}

1.7253
(0.1418)
[12.17]
{0.000}

1.8461
(0.1427)
[12.94]
{0.000}

Author:
Hanley

0.4926
(0.1955)
[2.52]

{0.014}

0.4390
(0.1881)
[2.33]

{0.023}
Year 0.0755

(0.0276)
[2.74]

{0.008}
R2

(adj. R2)
n

0.059
(0.020)

77

0.087
(0.036)

77

0.545
(0.531)

77

0.549
(0.534)

77

0.714
(0.690)

77

0.703
(0.678)

77

0.732
(0.705)

77
Cell contents are: Estimated coefficient

(StDev)
[t-value]
{p-value}
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Table 5 (cont.)

where:

Dependent variable = recreational value per person per visit;
Option =  1 where the value estimate relates to the sum of use plus option value and 0

where the value estimated is use value alone15;
Cheshire =  1 for studies conducted at Cheshire forest and 0 otherwise;
Loch Awe =  1 for studies conducted at Loch Awe forest and 0 otherwise;
Aberfoyle =  1 for studies conducted at Aberfoyle forest and 0 otherwise;
ITCols =  1 if study uses the individual travel cost method with an OLS estimator and 0

otherwise;
ITCml =  1 if study uses the individual travel cost method with a ML estimator and 0

otherwise;
ZTC =  1 if study uses the zonal travel cost method and 0 otherwise;
Hanley = 1 if study conducted by Hanley et al., and 0 otherwise.
Year =  Continuous variable; the number of years before (negative) or after (positive)

the base year (1990);
Note: The CV method is held as the base case for the various categories of the Method

variable.

In Table 5, Model A only uses the three Forest categories which were shown to be the most
significant site related predictors in preliminary ANOVA investigations. All three prove
statistically insignificant in the absence of other predictors. The addition of Option to yield
Model B does little to improve overall explanatory power. However, when all these variables
are removed in favour of Method to yield Model C, explanatory power increases dramatically,
although there is good prior reason to believe that the ZTC results are upwardly biased. Indeed
ZTC has a large, positive and highly significant coefficient. Hence caution is required
regarding direct interpretation of the fit statistics reported for these models. Nevertheless, the
direction of effect for this and the ITCols variable is in accordance with both theoretical and
empirical expectations, particularly as all the estimates are obtained from OLS regression
techniques which omit to model the truncation of non-visitors and are liable to overestimation
of consumer surplus values (the positive and significant coefficients on ZTC and ITCols being
in line with the findings of Carson et al., 1996). However, interestingly, ITCml is statistically
insignificant, suggesting that estimates produced by this method are similar to those from the
base case CV method. Accordingly ITCml is omitted subsequently.

Model D adds Option to the ITCols and ZTC valuation/estimation method variables. While
taking the expected positive sign, the coefficient on the Option variable fails to be significant
even at the 10% level until the three forest site variables are added to produce Model E. Model
E provides a substantial improvement in overall fit compared to the preceding two models.
The degree of fit does not change substantially in remaining models, the first of which (Model
F) replaces the site variable Aberfoyle with the author variable Hanley, with which it is
correlated (all of the Hanley et al., studies were conducted at Aberfoyle although other authors
also provide estimates for this forest).

The Hanley variable has a significant and positive coefficient, as per Table 416. However,
unlike the model reported in Table 4, Model F does not control for the OE variable within its

                                                          
15 Note that all TC studies relate to use value alone.
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CV based estimates (this is because such a variable cannot apply to TC estimates) and we
know from inspection (Bateman, 1996) that a majority of the CV studies conducted by Hanley
et al., did not use the downwardly biased OE approach. However, the fact that Hanley is
significant and positive in both Model F and Table 4 (which does control for elicitation
method) appears to support the argument that valuation estimates may be subject to authorship
effects. An alternative explanation is that the Hanley et al., estimates are elevated because of
some characteristics of the Aberfoyle site for which they were estimated. Yet a further
explanation might be that this result is in some way a product of the GLM modelling approach
adopted in this meta-analysis. All of these possibilities are explored subsequently.

Model G adds the final variable Year into the analysis. As per our analyses of CV estimates
this gave a small, positive coefficient which in this expanded dataset proved statistically
significant. This is an interesting finding, which seems likely to reflect a relative increase in
the perceived value of woodland recreation over this longer time period. The result is not
particularly robust, becoming insignificant (p = 0.181) when the oldest estimate (that provided
by Everett (1976)) is omitted, yet even then the sign and size of the coefficient remain similar
(� = 0.0526). This suggests that, given a longer data period, a positive trend in valuations
might become more clearly established. While emphasizing statistical uncertainties regarding
this result, its general message seems plausible, suggesting an increasing relative interest in
outdoor, environmentally based recreation over the last three decades and echoing the seminal
work of Krutilla and Fisher (1975).

The other relationships detailed in Model G also conform well to expectations. Values are
positively related to the Option variable which is now significant at the 5% level. Similarly the
Method variables ITCols and ZTC both have significant and positive coefficients reflecting
their expected relationship with the CV values which form the majority of the base case of this
analysis. Neither of the remaining Forest variables are significant at p<0.05 although Cheshire
is significant at p<0.10. The negative coefficient on this variable may reflect the high visitor
congestion noted in studies of this forest (Willis and Benson, 1989)17. Model G also provides
the best fit to our data and, given the desirable characteristics noted above, provides a typical
example of a meta-analysis estimated using conventional statistical modelling approaches. We
now consider an alternative to this approach and examine the extent to which this may provide
superior insight into the nature and robustness of these postulated relationships.

4. An MLM approach to meta-analysis
The various models reported in Tables 4 and 5 all assume independence between estimates.
However, in a recent meta analysis of CV studies of wetlands, Brouwer et al., (1999) use
Multilevel Modelling (MLM) techniques (Goldstein, 1995) to relax this assumption and
consider the possibility that valuation estimates are clustered within authors, not by the use of
Author variables such as that used above, but instead by modelling the residual variance of
estimates in two parts; that due to the effect of authors on study estimates, and that remaining
due to true unexplained error. In effect, this approach allows for the possibility that variation
within value estimates may differ between authors. In order to test this possibility we now
undertake an MLM exercise considering both the variation of estimates between authors and that
between forests.
                                                                                                                                                                                     
16 Note that controlling for the Method variables makes the Willis et al. values no longer significantly different

from other estimates.
17 By contrast the Loch Awe coefficient is positive (although not statistically significant) possibly reflecting its

somewhat remote and secluded location attracting a more ‘dedicated’ woodland user (a model excluding the
Loch Awe variable is presented in Bateman et al., 2000).
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A potential limitation of the application of GLM techniques in meta-analysis occurs if the
observations being modelled possess an inherent hierarchy. For traditional GLM estimation
strategies, some of the variables used to predict recreation may be specific to each individual
study (examples being the study design and elicitation method used). However, others, such as
the forest in which the study took place or the characteristics of the author, will be constant
across many of the published value estimates. These can be conceptualised as higher level
variables, and in this sense the data may be viewed as possessing a hierarchical structure. The
data structure from the above examples can be seen as actually corresponding to a range of
hierarchical levels; of value  estimates (level 1) within studies (level 2), of value estimates (level
1) within forests (level 2), or alternatively of value estimates (level 1) within authors (level 2)18.
Given sufficient data, this hierarchy could be extended with further levels representing, for
example regions or even nations.

Hierarchical data structures cannot be easily accommodated within the traditional GLM
framework. Here, the values of author or study location related variables must be collapsed to
the level of the individual value estimate and simply replicated across all observations sharing
those characteristics. This procedure is problematic in that it provides no information on, for
example, the probability of estimates made in the same forests, or by the same authors
producing similar value estimates. This limitation may be circumvented, as employed in the
examples above, by the use of dummy variables to indicate forest location or authorship.
However, this solution can present difficulties. With the present data, there are only a limited
number of authors and forest sites, and hence the number of dummy variables that need to be
added to the models are manageable. However, it is readily apparent that any model estimated
using dummies will quickly become extremely large and complex if the dataset contains
numerous observations at each level of the hierarchy.19

An alternative to the use of dummy variables to model hierarchical data structures is to fit a
series of separate regression models. For example, separate models could be fitted for each
forest or author. However, this approach defeats the objective of meta-analyses when the
variables found to be significant may differ between models. Furthermore, unreliable results
may be produced due to small sample sizes when there are relatively few estimates for each
forest, as in the present case.

Aside from methodological considerations, a further limitation of traditional GLM meta-
analyses stems from the fact that they may contain poorly estimated parameters and standard
errors (Skinner et al, 1989). Problems with standard error estimation arise due to the presence
of intra-unit correlation; the fact that recreation value estimates from studies within the same
forest, or by the same author, may be expected to be more similar than those drawn from a
random sample. If intra-unit correlation is small, then reasonably good estimates of standard
errors may be expected (Goldstein, 1995). However, where intra-unit correlation is significant
then traditionally employed GLM strategies will tend to under-estimate standard errors,
meaning that confidence intervals will be too short and significance tests will too often reject
the null hypothesis.

                                                          
18 If no two authors undertake a study in the same forest, then this may be extended to a three level hierarchy of

WTP estimates (level 1) within forests (level 2) within authors (level 3). If multiple authors do study the same
forests, then a more complex structure (known as cross classified) exists wherein estimates (level 1) are nested
within a cross-classified level (2) of forests and authors. Such a case is not considered here (although it is the
subject of ongoing research by the authors), but the theory of cross classified hierarchies is discussed in detail
by Goldstein (1995).

19 An example might be an international dataset of value estimates nested within hundreds of study locations.
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For simplicity, a two level hierarchy of i value estimates (at level 1) within j authors (at level
2) is considered in the examples below. As with a traditional generalized linear model, the
observed responses yij are the published mean per person per visit recreation value estimates in
1990 pounds sterling. Considering a situation with just one explanatory variable, OPTION
(defined as before) being tested, a simple model may be written as:

                                   
(1)

The subscript i takes the value from 1 to the number of value estimates in the model, and the
subscript j takes the value from 1 to the number of authors in the sample. Using this notation,
items with two subscripts ij vary from estimate to estimate. However, an item that has a j
subscript only varies across authors but is constant for all the estimates made by each author.
If an item has neither subscript it is constant across all studies and authors.

As the authors included in the analysis are treated as a random sample from a population,
Equation (1) may be re-expressed as:

                    (2)

Where �0 is a constant and �j is the departure of the j-th author’s intercept from the overall
value. This means that it is an author level (level 2) residual that is the same for all estimates
nested within an author. In other words this term describes, after holding constant the effect of
the explanatory variables within the model, the residual influence of the author in determining
the outcome for each individual mean WTP estimate they published.

The notations expressed in Equation (2) can be combined. Introducing an explanatory variable
cons, which takes the value 1 for all estimates (and hence forms a constant or intercept term),
and associating every term with an explanatory variable, the model becomes as shown in
Equation (3):

(3)

Finally the coefficients can be collected together and
written as:

                                                        (4)

ijijjij OPTIONy ���� 10 ��

jj ��� �� 00

jijij OPTIONy ��� ��� 10ˆ

cconsOPTIONconsy ijjijij 0010 ���� ����

ijjij 0000 ���� ���

ijijij OPTIONconsy 10 �� ��
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In Equation (4), both �j (the level 2 or author level residuals) and �ij (the level 1 or estimate
level residuals) are random quantities whose means are estimated to be equal to zero. A
comparison between the multilevel model expressed in Equations (3) and (4) and the original
non-hierarchical structure depicted in Table 4 illustrates the tenet of multilevel models.
Traditionally the residual error term of a model, �, is seen as an annoyance and the aim of the
modelling process is to minimize its size. With multilevel models the error term is of pivotal
importance in model estimation. Rather than a single error term being estimated, it is stratified
into a range of terms, each representing the residual variance present at each level of the
hierarchy. Viewed in this sense, �j represents author level effects, whilst �ij represents those
operating at the level of the value estimate.

If, after holding constant the influence of the xij explanatory variables in the model, �j > �ij,
then this would suggest that some factors associated with the authors themselves are of
greatest importance in explaining the residual variation in WTP estimates. If instead �j < �ij
then some un-modelled factor associated with the elicitation of each estimate (which, for
example, could be associated with the characteristics of each specific study, or might simply
be random variation in each elicited WTP value) is more important. A common scenario is
that, whilst both �j and �ij are large in a model containing few xij explanatory variables, both
will decrease as further explanatory variables are added and the residual variance in the model
is explained.

The structure presented in Equation (4) is known as a variance components model (Lin, 1997).
For ease of interpretation the estimated parameters may be classified as either being of a fixed
or random nature. The fixed parameters are those for which just a single coefficient is
estimated, and hence correspond to those that would be found in a traditional GLM. In this
example both CONS and OPTION are fixed. In contrast, the random parameters are those
where individual estimates are made for every unit at each level of the hierarchy. Here both �j

and �ij are random, as a value of �ij is estimated for each value estimate (at level 1 of the
model) and a value of �j  is estimated for each author (at level 2 of the model). Hence, in terms
of model interpretation, it is the stratification of the error term to form these random
parameters that differentiates a multilevel model from more traditional regression analysis
techniques. Remembering that OPTIONij  is a dummy variable that represents whether the
elicited WTP requested use plus option value (OPTION = 1) or use value alone (OPTION =
0), the variance components model depicts the relationship between OPTION and the value
estimate as being constant, but (provided �j  > 0) recreation values are modelled as being
higher for some authors than others.

Whilst there are various methods available for parameter estimation in multilevel models, an
approach known as Iterative Generalized Least Squares (IGLS) was adopted in our subsequent
analysis. The statistical theory underpinning IGLS is described in detail by Goldstein (1995).
Briefly, initial estimates of the fixed parameters are derived by traditional GLM
methodologies ignoring the higher-level random terms. The squared residuals from this initial
fit are then regressed on a set of variables defining the stricture of the random part to provide
initial estimates of the variances/covariances. These estimates are then used to provide revised
estimates of the fixed part, which is in turn employed to revise the estimates of the random
part, and so on until convergence. Crucially, a difficult estimation problem is decomposed into
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a sequence of linear regressions that can be solved efficiently and effectively, providing
maximum-likelihood estimates20.

It is important to note that the slopes and intercepts that are estimated for units within level 2
and above of the hierarchy will not be the same as those that would be obtained from a
traditional generalized linear solution. They are in-fact residuals which have, to a greater or
lesser extent, been shrunken towards the average regression line giving the predicted
relationship between mean WTP and the explanatory variables across all authors. Taking our

example of a 2-level model, at the author level, if )var( 0
2
0 ije ���  and

)var( 0
2
0 ju u�� then each author level residual is estimated using Equation (5):

(5)

Here, nj is the total number of estimates produced by author j, jy~ is the raw residual
associated with the author (the mean estimate level residual for all estimates made by author j)
and jû is the shrunken residual. From this, it can be seen that if nj is large and there are many
value estimates made by an author, then the predicted level-2 residuals will be closer to the
raw residual than when nj is small. If nj is small, then the residual will be shrunken towards the
mean. Similarly if 2

0e�  is large and there is a lot of variability in the recreation value estimates
produced by an author, then the predicted residual will also be shrunken. In this sense, the
MLM approach provides conservative estimates of variability at different levels of the
hierarchy where units based on a small sample or a very variable outcome are considered to
provide little information. This is particularly pertinent here because, as has already been
considered, the statistically significant positive coefficient observed for Hanley in Table 5 was
based on studies that were all conducted at a single forest (Aberfoyle).

A multilevel re-analysis of the meta-analysis data was undertaken using the MLwiN package
(Rasbash et al., 2000) developed by the Multilevel Models Project at the Institute of
Education, London. Two sets of model were produced; one with a hierarchy of WTP estimates
nested within authors, and one of estimates within study locations. The results of the model of
estimates nested within authors are given in Table 6

Although technically different, the fixed parameters in the model in Table 6 can be interpreted
in the same way as an ordinary regression. They confirm the findings of Tables 4 and 5 that
the highest estimates of recreation value are derived from ZTC models while the lowest come
from OE CV formats and that studies for which the Option dummy applies yield higher
recreation value estimates.

One of the objectives of fitting a multilevel model was to determine if, after controlling for the
variables in the fixed part of the model, there was still statistically significant variation in
WTP estimates between authors. These random effects are shown in the lower part of Table 6.
This part of the model is relatively simple. Although the multilevel methodology involves
estimating a separate intercept value for each author (�j) and a separate residual for each value
                                                          
20 A limitation of IGLS for models with a binomial or Poisson distributed response variable (neither of which

were used in the present application) is that is uses a method based on either marginal or penalized quasi-
likelihood. This requires assumption of normally distributed variance above level one of the hierarchy.
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estimate (�ij), the variance between the two levels of the model may be neatly summarized by
the two parameters 2

0u�  and 2
0e� . These are the same parameters used in the calculation of the

shrinkage factor illustrated in Equation (5) and are known as variance parameters, as they
indicate the variance in the �j and �ij terms respectively. Hence a comparison of the values of

2
0u�  and 2

0e� shows the relative importance of author (level 2) and estimate (level 1) effects in
determining the variability of WTP values that is not explained by the fixed parameters in the
model.

Table 6: MLM model estimates

Variable Coefficient 95% CI P

FIXED EFFECTS

Cons 0.616 0.364 - 0.879 <0.001

Option 0.339 0.028 - 0.654 0.04
CVnonOE 0.706 0.243 - 1.176 <0.001

ITCols 0.813 0.442 - 1.198 <0.001
ITCml 0.052 -0.367 - 0.427 0.8
ZTC 1.837 1.520 - 2.153 <0.001

RANDOM (HIERARCHICAL) EFFECTS

Variance 95% CI P
Level 1 (Value estimate)
      Variance 2

0e� 0.229 0.156 - 0.313 <0.001

Level 2 (Author)
      Variance 2

0u� 0.034 -0.154 - 0.021 0.7

The parameter estimates for both  2
0u� and 2

0e� are greater than zero, suggesting that
variability between estimates and between authors remains after controlling for the
explanatory variables that were included in the fixed part of the model. Taking the ratio of
these estimates suggests that approximately 12% of unexplained variation in elicited
recreation value is associated with author effects. However, the calculation of t-statistics for
each coefficient shows that whilst statistically significant residual variation remains between
estimates at level 1 (t = 5.72, p<0.001) the effect of authorship does not reach statistical
significance (t = 0.38, p>0.05). In other words, the multilevel analysis suggests that an author
effect is present but is not statistically significant.

Although in conflict with the earlier findings from the GLM analysis, such a result accords
with theoretical expectations that recreation values should not vary significantly according to
study authorship. This provides a substantial (if on its own insufficient) support for the
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practice of placing monetary values upon preferences for non-market environmental goods.
The author specific results are illustrated in Figure 1 where the value of the intercept value uj
estimated for each individual author is presented in rank order along with corresponding 95%
confidence intervals. The figure shows that, in the multilevel analysis, studies by Hanley et al.
are still predicted to give the highest recreation values and those by Willis et al. the lowest.
However, the confidence intervals now overlap. This represents a reduction in variance from
the situation observed in Table 4 where both estimates provided by Hanley et al. and Willis et
al. were found to significantly differ from that of other authors. The reduction of variance is
due to the effects of the conservative estimation strategy implemented in Equation (5) where
residuals are shrunken towards the mean value.

Figure 1: MLM author level residuals

The shrinkage illustrated by Figure 1 has interesting implications for the comparison of results
between multilevel and non-multilevel models. The message from the multilevel model is that
variation is present between authors but, because of the magnitude of the variance and the size
of the sample, it cannot be said to be statistically significant. Hence we are making a statement
about the importance of context (in this case authorship) and composition (the remaining
unexplained variation in between WTP estimates). The traditional GLM approach used
previously did the opposite; it told us little about the overall roles of context and composition,
but it did highlight two authors with rather different patterns of responses from the rest of the
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sample. From this comparison, it is clear that, whilst the conclusions reached may be different
from those of a traditional GLM analysis, the multilevel approach is prudent if the intention of
the analysis is to quantify whether there are overall contextual influences (in this case
associated with different authors) on the measured outcome (recreation value).

The earlier GLM analyses also found evidence of a Forest (site) effect where recreation values
for Cheshire were somewhat lower than the rest of the sample, and those for Loch Awe and
Aberfoyle were relatively higher (see Table 5). To test if any evidence of between-site
heterogeneity remained after a multilevel approach was taken, the model presented in Table 6
was refitted, but this time authorship at level 2 was replaced by Forest identifiers. The fixed
effect coefficient values and levels of significance were not found to differ greatly from the
previous example and are hence not replicated here. However in this case the values of 2

0u�

(now for forests) and 2
0e� (for value estimates) were estimated at 0.011 (t = 0.73, p>0.05), and

0.225 (t = 5.63, p<0.01) respectively. In similar fashion to the model for authors, these results
show strong variation between estimates, but only a limited forest site effect (accounting for
under 5% of the total residual variance). Figure 2 shows the forest level residuals ranked with
95% confidence intervals. In order to maintain legibility only those forests mentioned
previously are identified. As with the original non-multilevel analysis, Cheshire shows the
greatest negative residual (and hence correspondingly lower than predicted WTP values),
whilst Loch Awe and Aberfoyle yield the highest positive residual values.

Figure 2: Forest level residuals
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5. Discussion and Conclusions
Previously we have suggested a number of ways in which benefit transfer research may be
taken forward (Bateman et al., 2000). These include improvements in the conduct and
reporting of new studies, the specific incorporation of benefit transfer requirements within
their design, and the reanalysis of past work. The present paper goes some way towards
highlighting a novel way in which this latter aim might be best realized. We have compared
the application of traditional GLM and novel MLM methodologies to meta-analyses of British
woodland recreation values. Both sets of results generally conform well to expectations
derived from either theoretical considerations or empirical regularities. However, one of the
consistent messages derived from these results is the substantial impact of design choices
(such as the elicitation technique, or the choice of valuation and/or estimation method) upon
derived value estimates. This provides a cautionary note to the wider interpretability of any
single study.

Our GLM findings suggest that certain authors and forests are associated with large recreation
value residuals. However, the more sophisticated and conservative MLM approach shows that
these residuals are not large enough (or are not based on a large enough sample size) to be
differentiated from variation that might be expected by chance. Here we have fitted only
simple two level models. More complex structures have not been implemented here for a
number of reasons. No significant variation was observed between authors or survey site
locations, and it is highly unlikely that a more detailed model hierarchy would have
contradicted these findings. A second limitation to the use of more complex hierarchies
concerns sample size; as models become more complicated there is an associated loss of
degrees of freedom. In particular, the conservative estimation strategy used means that the
presence of a small amount of level 2 variation in a simple two-level model may be shrunken
to zero if either a more complex structure is attempted. Whilst the dataset we have studied is
comprehensive, it is a based on a sample of just 77 observations, and hence has somewhat
limited power. The increased number of observations that will result from more studies being
undertaken will allow a greater complexity of models to be fitted.

Although the essential ideas of multilevel models were developed over 20 years ago, it is only
recently that improvements in computing power and advances in our understanding of
effective model implementation have meant that their execution has become a practical
proposition (Bull et al., 1998). We are currently on a wave of innovation as use spreads from
the original developers to the wider research community. Having said that, the multilevel
approach retains some of the limitations of more traditional quantitative techniques, as well as
introducing new ones.

In the MLM models presented here, influences on recreation values are modelled more
powerfully than traditional techniques allow, yet the random parameters can ultimately offer
only limited insight into the reasons behind between-author and between-forest variations in
outcome. Preferences for complex, non-market environmental goods such as open-access
recreation involve a detailed interplay between a wide range of factors that are difficult to
quantify and may be subject to random variation. This unpredictability will undoubtedly
introduce uncertainty into any model, multilevel or not, developed to identify and predict the
important influences on such preferences. However, whilst multilevel models cannot remove
this uncertainty, they can allow it to be more richly quantified and accounted for, and hence
allow for systematic factors to be assessed.

Finally, considering the case at hand, our MLM estimated meta-analysis has some clear
messages for policy makers within the UK Forestry Commission. While our results suggest
that different authors provide consistent estimates of woodland recreation values, those values
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themselves do not appear particularly responsive to choice of study site. This finding is in line
with other research showing that, while visitor arrivals at UK woodlands are highly responsive
to a variety of locational factors, they are somewhat less responsive to the facilities on offer at
these sites (Brainard et al., 1999; 2001)21. Given this, the onus upon woodland policy makers
within the UK context, appears to be upon using scarce resources to optimise site location
rather than to extend the diversity of facilities within woodlands.
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APPENDIX A: MODELLING ANNUAL VISITS (FROM BATEMAN,
1996)

OVERVIEW:

The study by Bateman (1996) of visitors to Lynford Stag, a recreational site within Thetford Forest, East Anglia,
included a previously unpublished appendix concerning the modelling of annual visits from a visitor survey
occurring at one particular period in the year. Given the relevance of this work to the present study (and its
unpublished nature) this analysis is reported in full within this appendix.

A.0 INTRODUCTION

Our estimated arrivals function only relates to those visitors who were interviewed during those days which
were sampled during the survey period. If we wish to extrapolate our arrivals function to estimate annual arrivals we
need to take account of the following:

i. Visits which occur while interviewers were occupied with other visitors or which occur outside
interview hours;

ii. Visits which occur on non-sampled days during the survey period;
iii. Visits which occur outside the survey period.

In the following sections we make all of the adjustments outlined above and in so doing develop a model
of annual visitation pattern at the Thetford site. This allows us to extrapolate our arrivals function onto an annual
basis. This adjusted annual arrivals function is subsequently used to predict per annum visit totals for five sites in
Wales for which information on actual arrivals is available, thus permitting an actual versus predicted validation test
of the applicability of our adjusted annual arrivals function to other sites.

A.1: ALLOWING FOR NON-INTERVIEWED VISITORS DURING SURVEY DAYS

The 1993 Thetford Forest survey interviewed 351 parties over 17 survey days (one of which was curtailed
due to poor weather) spread across the period 26.3.93 to 25.4.93.  From 1.4.93 an electronic induction loop car
counter operated at the site giving accurate information regarding the number of party visits per week.  Table A1
details visit and survey data for the overlapping period of 12 days22.

Table A1: Overlap of interview days and electronic counter operation days

Overlap
period

Counter
days
(1)

Interview
days
(2)

Interviews
(No. of
parties)

(3)

Cars
(4)

(4)*
[(2)/(1)]

=(5)

Interview
rate

[(3)/(5)]
(%)

1.4.93-4.4.93
5.4.93-11.4.93
12.4.93-19.4.93
19.4.93-26.4.93

4
7
7
7

2
6
2
2

 45
103
 59
 50

658
844

1436
1099

329
723
410
314

13.6778
14.2378
14.3802
15.9236

Totals 25 12 257 4037 1776 14.4707

Table A1 shows that we achieved just over a 14% interview rate on the 12 days for which data is available.
Assuming that this rate also applies for the full 16 effective days which were sampled then multiplying our total
sample size by a factor of 1/0.144707 gives our best estimate of the total number of visitors during those days of the

                                                          
     22A potential problem would arise at sites with a large number of pedestrian visitors not arriving by car.  As
confirmed by our survey this is not a significant problem at Lynford Stag which can only be reached on foot by a
lengthy walk.
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survey on which interviewing took place. Therefore the estimated number of arrivals during those 16 days is as
follows:

Estimated arrivals (parties) =  351 *  
1

0.144707

= 351 *  6.9105

= 2426

However, the sample period was not evenly distributed throughout the days of the week. In order to
increase sample size, 7 of the sample days were on weekends (3 Saturdays and 4 Sundays).  We therefore need to
examine whether arrival rates are significantly larger on weekend days than weekdays as, if they are, then our
arrivals function will overestimate visitors.

Table A2 shows on which days the survey was conducted and the number of interviews on each day.
Average interview numbers are calculated in the final column.  The average number of interviews/day over all days
was 20.16 (� = 5.68).  Weekend days did record a higher interview rate of 22.55 interviews/day (� = 2.75)
compared to a mean for weekdays of 19.20 interviews/day (� = 6.24).  However, upon testing, this difference was
found to be highly insignificant (t = 0.62).

Table A2: Interview rates across survey days

Day Interviews
(No. of parties)

Cumulative
interview

count

% of total
sample

Cumulative
% of total

sample

Survey (No.
of days)

Average
interviews/day

Mon
Tues
Wed
Thurs
Fri
Sat
Sun

  29
  32
  20
  10
105
  76
  79

  29
  61
  81
  91
196
272
351

  8.26
  9.12
  5.70
  2.85
29.91
21.65
22.51

 8.26
17.38
23.08
25.93
55.84
77.49

100.00

1
2
1
1
5
3
4

29.0
16.0
20.0
10.0
21.0
25.3
19.8

        N = 351 mean=20.16
   � = 5.68

One possible complicating factor was very adverse weather conditions on one of the weekend sample days.
Removing this from the dataset raised the weekend day mean to 25.65 (s = 0.35).  However, whilst this increased
the overall apparent contrast between weekend and weekday distributions this difference remained statistically
insignificant (t = 1.26) and, as Britain is no stranger to adverse weather we feel that our initial findings are more
defensible.

In summary we can conclude that our inflation factor of 6.9105 is unbiased in relating survey day
interviews to the total number of parties visiting per survey day.

A.2: ALLOWING FOR NON-SURVEYED DAYS DURING THE SURVEY PERIOD

Ultimately we need to relate arrivals during our sample period to annual arrivals.  As arrivals data is
recorded upon a weekly rather than daily basis it will be convenient to convert our 16 day estimate to one which
relates to the entire encompassing five week (35 day) period.  Given the above investigation, a justifiable and simple
conversion is to multiply by a factor of 35/16.  Therefore our party arrivals estimate for a five week period from late
March to the end of April 1993 is as follows:

= 351 * 6.9105 * 2.1875
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= 351 * 15.1167

= 5306

A.3: RELATING SAMPLE PERIOD TO ANNUAL VISITS

We now need to consider evaluation of a factor to relate estimates for the sample period to annual arrivals.
To do this we first require an accurate estimate of annual visits.

A.3.1: Adjusting for systematic errors in pneumatic visit counters

Table A3 details weekly visitor data collected via pneumatic counter from March 1990 up to the
installation of an electronic loop counter on 1 April 1993. Table A4 details weekly visitor data from the latter
electronic counter from its installation to the end of July 1993.

A major problem facing UK forest recreation research has been the acknowledged deficiencies of
pneumatic visit counters23.  Pneumatic counters tend to suffer from systematic errors, that is they record the overall
pattern of visits reasonably well but tend to be systematically inaccurate in recording absolute numbers.  For
example, a particular pneumatic counter may, on average, fail to register one car in ten whilst another pneumatic
counter may double count on average one car in fifteen.  Each pneumatic counter seems to have its own
idiosyncrasies.  This means that we have to calculate adjustment factors for any individual pneumatic counter whose
data we wish to use.

This situation has been considerably improved by the recent introduction of electronic loop counters which
are considered to be far more accurate.  However, such counters have only been installed at a few sites and since
early 1993.  One of the major reasons determining our choice of survey site was the installation of an electronic loop
counter at Lynford Stag. Because errors in the pneumatic counters tend to be systematic, comparison of the data
obtained from a particular pneumatic counter with that derived for the same period from electronic loop counters
allows estimation of a pneumatic/electronic loop conversion factor.  Such a factor can then be applied to the
pneumatically derived annual visitor estimates to adjust these for error in such counters.  While we did not have a
period over which both pneumatic and electronic loop counters were in operation, we can compare counts made by
the electronic loop device with those made by the pneumatic counter for the same period in the previous year. While
this is perhaps less than ideal such a comparison can be improved by ensuring that factors such as the number of
bank holidays and wet weather days is the same during compared periods. Such checks were made and appropriate
comparable periods defined. Table A5 compares data from the electronic loop counter in 1993 with data from the
relevant pneumatic counter24 for identical periods in 1992 and 1991. The weighted mean adjustment factor implied
from table A5 was 0.7427, i.e. the annual visitor totals recorded by the pneumatic counter should be adjusted by this
factor.

                                                          
     23Pers. comm., Roger Oakes, Forestry Commission Statistics Branch, Edinburgh, August 1993.
     24It is very important to note that each individual pneumatic counter is liable to exhibit its own idiosyncratic
systematic error.  The counter in table A3.17 systematically overestimated arrivals whereas analysis of an earlier
counter used in 1990 showed that it underestimated arrivals (electronic loop/pneumatic = 1.3483).  It is therefore
important individual adjustment factors are calculated for each pneumatic counter.
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Table A3:  Lynford Stag traffic count 1990-93: pneumatic counter

Note: some pneumatic counters are designed to record the number of vehicle axles while others record the number of tyres. Weekly readings have to be divided by either 2 or 4
accordingly. Counter types are recorded in the remarks column.

Date of Reading Traffic Counter Reading Difference from
previous reading

Remarks (e.g. about counter type, weather, public holidays,
closures, special events)

Cars:
(party visits)

Date Month Year

1
8

15
22
29
5

12
19
26
3

10
17

13
16
23
30
6

13
20
27
4

11
18

3
3
3
3
3
4
4
4
4
5
5
5

8
8
8
8
9
9
9
9

10
10
10

90
90
90
90
90
90
90
90
90
90
90
90

90
90
90
90
90
90
90
90
90
90
90

4
4
4
4
4
4
4
4
5
5
5
5

1
2
3
3
5
6
6
6

1
2
3
4
5
6
8
9
1
3
4
7

3
2
9
9
8
5
1
3
4
6

8
8
5
5
9
9
4
7
7
1
9
9

9
5
6
0
6
0
3
2
5
8
4

2
5
6
7
6
0
1
4
7
7
5
2

1
1
2
5
8
0
3
2
5
8
4

0
0
9
6
3
5
3
3
3
2
4
8

4
7
9
2
1
8
9
4
0
9
1

1

1
1

1
1
2
1
1
2

2
10
16
10
8
7
5
2
1
1

0
7
0
3
9
5
3
0
3
7
9

5
0
4
6
3
3
9
2
3
5

3
1
0
8
4
0
3
3
9
8
7

9
3
2
2
2
2
3
6
2
6

0
9
7
7
2
8
0
0
9
2
4

3
6
3
9
7
1
5
6
9
2

DIVIDE BY 2 UNTIL 31.5.90
Wet & windy
Wet & windy-generally cloudy
Windy at weekend-fine & warm week
Warm & windy
Cold & windy weekend
Warm weekend otherwise variable
Sunny but cold wind
Windy, cold & showery
Improvement from weekend
Warm & dry becoming hot
Hot & dry w/e, cooler BH Monday
COUNTER DEFECTIVE - REMOVED

NEW COUNTER INSTALLED, DIVIDE BY 4
Hot & Sunny becoming cooler
Rain at w/e becoming hot
Hot Bank Holiday
Becoming changeable & cooler
Warm
Pleasant w/e
Showery & cool
   "    "   "
Warmer
Sunny w/e & generally warm

515
359
503
639
471
754
665

1015
699
891

1487

648
2509
4106
2657
2082
1830
1484
566
332
390
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Table A3 (cont.)

Date of Reading Traffic Counter Reading Difference from
previous reading

Remarks (e.g. about weather, public holidays, closures, special
events)

Cars:
(party visits)

Date Month Year

25
1
8

15
22
29
6

10
13
20
27
3

10
17
24
31
7

14
21
28
7

14
21
28
4

11
18
25

10
11
11
11
11
12
12
12
12
12
12
1
1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4

90
90
90
90
90
90
90
90
90
90
90
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91

6
6
6
7
7
7
7
7

1
1
1
1
1
1
2
2
2
3
3
3
5
5
6
6

6
7
9
0
1
2
2
3

1
3

8
0
3
5
7
9
9
1
4
8
1
5
9
0
6
1
5

4
8
2
1
1
0
7
4
5
1
0

2
7
1
3
5
6
8
9
7
2
4
5
9
8
0
6
2

2
5
7
1
2
1
8
1
3
3
0

8
0
3
7
0
0
5
8
7
6
1
3
1
1
9
0
9

1
3
3
9
2
8
5
5
0
1
1

2
6
3
3
9
9
1
8
6
1
6
9
4
9
4
2
9

1
1

1

1

5
2
2
2
2
2

2
2
3
3
4
4

10
5
5
3

4
4
8
0
8
7
6

6
8

2
4
4
2
1
1
2
1
8
4
1
1
3
9
2
5
6

3
2
4
0
9
6
3

0
7

8
2
2
4
3
0
4
3
8
8
5
2
7
9
7
0
9

2
0
6
3
6
7
0

1
0

1
4
7
0
6
0
2
7
8
5
5
3
5
5
5
8
7

Variable sunshine
   "        "
   "        "     + rain
   "        "     "   "
Dull wet & cool
 "    "  "   "
Variable
DEFECTIVE COUNTER-NEW ONE INSTALLED Variable, cold
& snow
  "        "   "  "
Not read: 1/2 of following week total
Variable but windy
   "      "    "
Variable
   "
Cloudy & cold
   "   " cold
Snow & very cold
Milder
  "
  "
Cool
Variable

Bank holiday weekend BH

Cool
Cool, showery

358
355
211
251
224
192
157

-
150
467
660
660
606
607
560
534
525
60

534
722
871
789

1031
1094
2749
1319
1377
924
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Table A3 (cont.)

Date of Reading Traffic Counter Reading Difference from
previous reading

Remarks (e.g. about weather, public holidays, closures, special
events)

Adjusted cars:

Date Month Year

2
9

16
23
30
6

13
20
27
4

11
18
25
2
8

15
22
29
5

12
19
26
3

10
17
24
31
7

5
5
5
5
5
6
6
6
6
7
7
7
7
8
8
8
8
8
9
9
9
9

10
10
10
10
10
11

91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91
91

6
7
8
8
9

1
1
2
3
3
4
5
6
7
9
0
1
3
4
5
5
6
6
7
7
8
8
9

5
1
0
7
3
5
3
9
5
2
9
8
6
6
8
0
1
3
1
3
1
8
4
8
4
9
3
8
1

2
7
2
3
9
6
6
4
4
0
6
4
7
2
0
1
5
6
4
4
9
5
3
8
2
3
6
0
5

9
1
3
0
8
6
4
4
3
1
1
1
9
0
5
3
7
7
0
7
7
9
7
5
2
5
8
0
7

9
3
4
0
8
4
2
9
1
7
5
4
1
2
3
0
6
6
3
4
6
4
3
0
7
7
0
1
0

6
8
7
6

12
6
5
5
6
7
8
8
9

11
12
11
12
17
12
8
6
5
4
5
5
4
4
3

4
5
0
6
6
9
8
9
6
5
7
3
4
8
0
4
1
7
0
5
6
7
4
3
1
3
3
4

1
2
6
8
7
7
0
8
8
9
9
7
1
5
7
4
0
2
7
0
1
7
7
7
3
3
2
6

4
1
6
8
6
8
7
2
6
8
9
7
1
1
7
6
0
7
1
2
8
9
7
7
0
7
1
9

Cool
BH Monday - cool
Cool, sunny intervals
  "     "       "
  "     "       "      BH
  "     "       "
Cool, showery & windy
  "     "     "   "
  "     "     "   "
  "     "     "   "
Hot & sunny
 "  "   "
 "  "   "
Mainly hot & sunny, some showers
  "     "  "   "      "     "
  "     "  "   "   cool on Sunday
Warm & dry
Warm & dry except Friday BH
  "  "  "
  "  "  "
Variable but mainly sunny
Showery
   "
Dry & sunny
Windy, cool & showery
Cloudy & cool
   "   "  "

1603
2130
1766
1672
3169
1744
1452
1495
1671
1899
2200
2094
2353
2963
3019
2861
3025
4432
3018
2125
1654
1445
1119
1344
1282
1084
1080
867
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Table A3 (cont.)

Date of Reading Traffic Counter Reading Difference from
previous reading

Remarks (e.g. about weather, public holidays, closures, special
events)

Adjusted cars:

Date Month Year

14
21
28
5

12
19
26
2
9

16
23
30
6

13
20
27
5

12
19
26
2
9

16
23
30
7

14
21

11
11
11
12
12
12
12
1
1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4
4
5
5
5

91
91
91
91
91
91
91
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92
92

9
9
9
0
0
0
0
0
1
1
1
1
2
2
2
2
3
3
4
4
4
4
5
5
7
7
8
9
9

1
4
7
0
2
4
6
8
2
5
7
9
2
4
6
9
3
7
0
3
7
9
3
8
0
6
6
1
9

5
8
4
3
9
6
6
7
4
2
3
8
0
0
7
3
4
3
8
8
0
9
9
9
0
3
4
3
4

7
5
8
3
4
3
9
7
3
6
1
4
3
9
0
7
3
1
9
4
7
4
4
0
3
2
1
3
0

0
0
6
0
0
0
0
3
2
8
7
5
4
0
3
2
0
9
4
3
2
9
1
7
3
3
6
0
3

3
2
2
2
1
2
2
3
2
2
2
2
2
2
2
4
3
3
2
3
2
3
5

11
6

10
4
8

2
6
8
5
6
0
0
6
8
0
5
1
0
6
6
0
8
5
9
2
8
9
9
1
2
0
9
0

8
3
4
9
9
6
8
5
2
4
2
8
6
1
6
5
8
7
4
2
7
9
6
2
9
9
2
7

0
6
4
0
0
0
3
9
6
9
8
9
4
3
9
8
9
5
9
9
7
2
6
6
0
3
4
3

Cloudy & cool
  "    "  "
  " but milder
  "  "    "
Cold & frosty
Milder
Windy & mild
Mild
 "
 "  & cloudy
Sunny spells - cold
Variable but mainly cloudy
Cold variable cloud
Changeable
    "
Half term - variable
Variable
   "
   "  & wet
   "  "  "
   "  "  "
   "  "  "
   "  "  "
Variable    Easter BH
   "    & cool
May BH Mainly cold became warmer
Variable - wet w/e
Mainly hot & dry

820
659
711
647
422
515
521
915
706
512
632
547
516
653
667

1014
972
894
737
807
719
998

1491
2781
1572
2523
1231
2018
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Table A3 (cont.)

Date of Reading Traffic Counter Reading Difference from
previous reading

Remarks (e.g. about weather, public holidays, closures, special
events)

Adjusted cars:

Date Month Year

28
4

6
12
19
26
3

10
17
24
31
7

14
21
28
3

10
18
25
4

11
18
25

5
6

11
11
11
11
12
12
12
12
12
1
1
1
1
2
2
2
2
3
3
3
3

92
92

92
92
92
92
92
92
92
92
92
93
93
93
93
93
93
93
93
93
93
93
93

9
1
1

2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4

9
1
7

2
4
5
7
8
9
0
1
1
2
3
4
5
6
7
8
9
1
2
4
6

4
8
8

6
4
8
1
5
4
3
1
8
2
5
3
3
3
3
5
9
2
6
6
2

0
3
9

6
7
8
1
7
5
2
2
5
7
0
7
5
5
3
0
6
5
3
3
3

3
2
7

4
7
0
7
0
9
5
8
8
2
4
4
5
2
0
2
9
1
1
4
0

12
6

1
1
1
1

1

1
1
1
1
2
1

4
0

8
4
2
4
8
8
8
7
4
2
8
9
9
9
1
4
2
3
0
5

2
6

1
0
3
5
8
8
0
3
1
3
7
8
9
7
7
6
8
8
0
9

9
5

3
3
7
3
9
6
0
0
4
2
0
1
7
8
2
7
2
0
3
6

Mainly hot & dry.  BH
Variable
COUNTER REMOVED
REPAIRED-COUNTER REPLACED AT STAG
WITH THIS READING. DIVIDE BY 2.
Cold & dry
Frosty a.m. overcast drizzle
Clear & dry
Wet & windy
Cold & damp
Dry & frosty
Cold & frosty
 "   "   "
Wet & mild
Cold/very windy
 "    "     "
Wet & mild
Dry & overcast
 "  "    "
 "  "    "   (mild for Feb)
Dry & mild
Snow/cold/overcast
Mild/frosty/dry
Warm/sunny
Cool/frosty start

3107
1516

-
-
-

906
701
618
726
444
443
400
365
207
616
435
490
498
489
586
733
641
690

1001
798
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Table A4:  Lynford Stag traffic count 1993: electronic loop counter

Week
no.

Week commencing Start of week reading End of week
reading

Change Cars (party visits) Remarks

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

 1.4.93
 5.4.93
12.4.93
19.4.93
26.4.93
 3.5.93
10.5.93
17.5.93
24.5.93
31.5.93
 7.6.93
14.6.93
21.6.93
28.6.93
 5.7.93
12.7.93
19.7.93
26.7.93

46230
47546
49234
52106
54304
56471
59700
61816
63735
66514
70384
73863
76436
79072
82460
85624
88329
91193

47546
49234
52106
54304
56471
59700
61816
63735
66514
70384
73863
76436
79072
82460
85624
88329
91193
94845

1316
1688
2872
2198
2167
3229
2116
1919
2779
3870
3479
2573
2636
3388
3164
2705
2864
3652

 658
 844
1436
1099
1083
1615
1058
 959
1389
1935
1739
1287
1318
1694
1582
1352
1432
1826

Dry/cool
Overcast/drizzle BH
Warm/sunny BH
Cool/sunny
Cold/windy
Warm/sunny BH
Hot/dry
Hot/dry
Hot/dry
Warm/sunny BH
Warm/sunny
Warm/overcast
Dull/drizzle
Warm/sunny
Cool/damp
Warm/damp
Wet/warm
Cool/windy

Notes: The 'Change' column refers to the difference between the start and end of week readings.  This tells us the number of cars both entering and leaving the car park.  Dividing
this number by 2 gives the number of cars visiting the site during the week (shown in the 'Cars' column). Total cars for the entire period shown = 24307.
BH = Bank holiday
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Table A5: Comparison of visitor counts by pneumatic and electronic loop counters Lynford Stag (1991-93)

Period Counter  Cars     Electronic Loop
           Pneumatic

1.4.93-10.6.93 Electronic loop 13,071 0.7233
1.4.92-10.6.921 Pneumatic 18,071

4.4.93-1.8.93 Electronic loop 23,850  0.7543
4.4.91-1.8.91 Pneumatic 31,617

Note: 1. Counter removed due to failure 11.6.92
2. Ratios are 0.7233136 and 0.754341 respectively. Weighted mean = 0.7427264.

A.3.2: Modelling Annual Visit Trends

In Bateman (1996) we estimate an arrivals function which can predict the number of visitors which will
arrive during the survey period25.  We now need to convert this to an estimate of annual arrivals. This is achieved by
examining the relationship between arrivals in our sample study period and annual arrivals.  But for a derived factor
to be reliable this relationship needs to be stable.

Data from the same pneumatic counter analysed in table A5 was held for the period w/c 13.12.90 to w/c
4.6.92.  An initial analysis investigated two 12-month periods within this dataset: 3.1.91 to 1.1.92 and 6.6.91 to
4.6.92 (both consist of 364 days).  Adjusting for pneumatic counter error, annual arrivals were 56316 and 56843
parties respectively, a difference of less than 1% between the two annual sums. Figure A1 shows the frequency of
visits per week for virtually the entire operation of this single pneumatic counter. Note that the seasonal periods are
defined to reflect the interaction of both seasonal and holiday period dates.  These two factors are highly collinear
and may not be entered separately into the model.

                                                          
     25Which we have previously adjusted for those who were not interviewed during the survey period.
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Figure A1: Visits to Lynford Stag (parties per week): w/c 3.1.91 to w/c 4.6.92

Key: BH = Bank holiday (excluding Christmas)
RS = Raining or snowing/frosty
1  = Winter period
2  = Spring/Autumn period
3  = Summer period

Considering our two 12 month periods (3.1.91 to 1.7.92) and (6.6.91 to 4.6.92), there is clearly a
considerable area of overlap.  However, the non-overlapping weeks of the first period show a striking similarity to
corresponding weeks in the second. In both cases relevant variables determining visits appear to be seasonal factors,
bank holidays (BH) and rain or snow (RS).

In order to test the stability of the relationship between our survey period and annual visits, a simple
statistical model of the latter was constructed.  Using this, a hypothesis as to the stability of the sample/annual
relationship could be tested.  All visitor data was adjusted for pneumatic counter error prior to modelling.

As figure A1 indicates, there is clearly a strong seasonal pattern to arrivals26.  This reflects a mixture of
annual weather patterns heightened by the distribution of holidays.  Visits are roughly constant at a low level for
approximately the first 12 weeks of the year after which visit frequency grows at a fairly steady rate until a plateau is
reached at about week 31.  Visit frequency falls relatively sharply from week 37 to return to winter levels by about
week 45.  Oneway analysis of variance tests showed that the pre and post New Year winter visitation rates were
insignificantly different as were the spring and autumn periods. Figure A2 details this analysis.  Three highly distinct
seasonal periods could then be defined: Winter; Spring/Autumn; and Summer. Figure A3 details statistical analysis
of such a three level seasonality variable27.

Further investigation revealed two further important explanatory variables affecting weekly visit totals.
Firstly, weeks which contained a bank holiday28: recorded significantly higher visit numbers than comparable weeks
within the same season but without bank holidays. Secondly, weeks characterised by unusually high levels of rain
for the season or which experienced snow29 recorded significantly lower visit rates than comparable weeks in the
same season without such adverse weather conditions.

                                                          
     26Both monthly and weekly variables were examined with the latter, as expected, providing a better fit to the
data.
     27Initial analyses (such as those detailed in figures A2 and A3) examined the dataset for 3.1.91 to 1.1.92.  The
full regression model, detailed subsequently, examines data for the full period from 13.12.90 to 4.6.92.
     28Tests were run to examine the effect of the double bank holidays of the Easter period.  These proved to be
insignificantly different from single day bank holidays.  We conclude that a bank holiday significantly raises the
probability that a household will visit but a double bank holiday does not lead to two visits being made.
     29Data from Forestry Commission records.  Various permutations of weather were investigated with rain/snow
being the only factor not collinear with the seasonality variable ie. rain/snow depresses visitor rate irrespective of the
season.
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Figure A2: Oneway analysis of variance of weekly visits (parties) on 5 seasonal periods during the year
3.1.91 to 1.1.92.  Visits adjusted for pneumatic counter error.

   Individual 95% CI's for mean visitor
           numbers in each period               Period
         (based on pooled st. dev.)
   --------+---------+---------+---------
     (--*-)                              1. Post New Year
                  (-*-)                  2. Spring
                               (---*---) 3. Summer
            (---*--)                     4. Autumn
     (--*--)                             5. Pre New Year
   -------+---------+---------+---------
         700      1400      2100
      Mean visitor numbers per period

Analysis of variance on weekly visits (pooled st. dev = 322.5)

Source df SS MS F p

Period
Error
Total

4
47
51

19082608
4887401
23970008

4770652
 103987

45.88 0.000

Period n mean st.dev

1. Post new year
2. Spring
3. Summer
4. Autumn
5. Pre new year

12
18
6
8
8

464.1
1349.7
2391.3
1033.6
479.2

175.4
418.9
443.5
264.8
114.5

Figure A3: Oneway analysis of variance of weekly visits (parties) on 3 seasonal periods for the year 3.1.91 to
1.1.92.  Visits adjusted for pneumatic counter error.

   Individual 95% CI's for mean visitor
           numbers in each period               Period
         (based on pooled st. dev.)
   --------+---------+---------+---------+
     (-*-)                                   1. Winter
                 (-*-)                     2. Spring/Autumn
                               (---*---)     3. Summer
   --------+---------+---------+---------+
          700      1400      2100      2800
       Mean visitor numbers per period

Analysis of variance on weekly visits (pooled st. dev = 333.3)

SOURCE DF SS MS F p

Period(3)
ERROR
TOTAL

2
49
51

18527962
5442047

23970008

9263981
 111062

83.41 0.000

LEVEL N MEAN STDEV

1.Winter
2.Spring/Autumn
3.Summer

20
26
6

470.2
1252.5
2391.3

150.7
401.3
443.5



122

With our three explanatory variables defined, regression models of weekly visitor rate could be estimated.
A linear specification provided a best fit to the data, the model being reported as table A630.

Table A6: Generalised linear model of weekly visitation pattern at Lynford Stag, Thetford Forest.
Dependent variable = visits per week (adjusted for pneumatic counter error)
Data period: 13.12.90 to 4.6.92

Term Coeff Stdev t-value p

Constant
Season:
    Winter
    Spring/Autumn
Rain/Snow
Bank Holiday

  1623.58

  -803.40
  -120.85
  -131.93
   432.65

56.01

40.48
40.84
30.92
44.97

28.99

-19.85
-2.96
-4.27
9.62

0.000

0.000
0.004
0.000
0.000

Analysis of variance

Source df Seq SS Adj SS Adj MS F p

Season
RainSnow
BankHol
Error
Total

2
1
1

73
77

23452372
1980331
4159146
3279836

32871684

17710412
 817955

4159146
3279836

8855206
 817955

4159146
  44929

197.09
18.21
92.57

0.000
0.000
0.000

where:

VISITS   = Dependent variable: Number of parties (cars) visiting Lynford Stag per week
SEASON   = 1 for a winter week; 2 for a spring/autumn week; 3 for a summer week
RAINSNOW = 1 if significant rain or snow during the week; 0 otherwise
BANKHOL  = 1 if week contains a bank holiday; 0 otherwise

The model given in table A6 describes the data well (R2 = 90.0%) with expected relationships on all
explanatory variables, the latter all being significant at the 1% level.

The model was then used to examine those periods which are relevant to the relationship between our
survey observations and annual visits.  Our survey spanned the five week period from 26.3.93 to 25.4.93 and so
we wish to see how robust the relationship between such a period and annual arrivals might be.  The model given
in table A6 uses data for similar periods both in 1991 and 1992 and period/annual relationships can be calculated
for both.  However, the model gives us reason to believe that this relationship will not be completely stable for
these two years.  Whilst the 5 week period 28.3.91 to 1.5.91 contains just one rainy week, the 5 week period
26.3.92 to 29.4.92 contains three (bank holidays being constant between the periods).  The model therefore
predicts that the latter period will have less visitors than the former but that the annual totals for 1991 and 1992
are likely to be similar(from our previous observations and because annual weather patterns are similar).
Examining actual arrivals for these periods we find that the predictions of our model are borne out.  Table A7
details visits for the survey periods in previous years (1991, 1992), along with respective annual totals and
resultant ratios.

                                                          
     30The model is fitted using a generalised linear modelling (GLM) package where the upper level of each
categorical variable is taken as the reference point from which category coefficients for that variable are calculated.
Thus the upper level of the season variable (3; summer) is not explicitly shown as it is the default when season is
neither winter or spring/autumn. Standard output from the GLM package would refer to the absence of rain/snow or
of bank holidays, however as this is counter to the conventional approach in specifying dummy variables, the
variables in table A3.18 have been respecified to give standard outputs ie visit rate is lowered by rain/snow and
raised by bank holidays.
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Table A7:  Survey period/annual arrivals conversion factors

Year Party visits during
'survey period'

Annual visits Ratio

1991
1992

5543
5048

56316
56843

10.1598
11.2605

Although the two periods appear dissimilar a oneway analysis of variance rejected such a hypothesis (p
= 0.796).  In effect the relationship between visits in the sample period and annual visits varies logically with the
explanatory variables in table A7 and seems to exhibit reasonable temporal stability.  Given that the 1991 period
appears to be one of relatively good weather, and that for 1992 seems relatively poor, a reasonable assumption
would be to adopt a midway point between the two resulting values, this being 10.7102. Applying such a factor
to our survey sample (after allowing for those not surveyed on survey days and for those days not sampled
during the survey period) gives a predicted arrival total for the 1993 survey period of 5306 party visits, an
estimate which accords well with actual visits in 1993 and lies midway between actual visits in 1991 and 1992
further justifying our choice of a mean period/annual conversion ratio.

A.3.3: Summary: relating survey period to annual visits

A number of conversion factors have now been calculated such that we can now relate our observed
sample of 351 party visits to an estimated annual visit total as follows:

i. Allowing for those who were not interviewed on survey days:

= 351 * 6.9105

= 2426 parties

ii. Allowing for days not surveyed during the survey period:

= 351 * 6.9105 * 2.1875

= 351 * 15.1167

= 5306 parties

iii. Relating the survey period to annual totals (after first allowing for pneumatic counter error in the latter):

= 351 * 6.9105 * 2.1875 * 10.7102

= 351 * 161.9031

= 56828 parties

Our estimated total party visits based upon our survey observations accords well with both the 1991 and
1992 totals detailed in table A7 being within 1% of the former and almost identical to the latter.

The arrivals function detailed in chapter 5 operates in terms of parties for which the above conversion
factors are appropriate.  However, we could further convert this to estimate the number of person visits per
annum.  Table A8 provides descriptive statistics regarding party and household size and composition gathered
from our survey at Lynford Stag.
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Table A8:  Party and household size and composition: Thetford survey

Variable N1 mean median tr.
mean2

st. dev s.e.
mean

min max Q1 Q3

Party16+
Party<16

House16+
House<16

350
350
351
351

2.374
1.480
2.234
1.137

2
1
2
1

2.067
1.229
2.152
1.044

2.174
2.230
0.924
1.204

0.116
0.119
1.049
0.064

0
0
1
0

25
28
11
6

2
0
2
0

2
2
2
2

Notes: 1. 1 missing observation with regard to party age
2. 5% trimmed mean

Table A8 shows that the average party consisted of 2.37 adults and 1.48 children.  These means are
somewhat inflated by a very few large parties and it may therefore be more valid to consider the median party
which consists of 2 adults and 1 child31. Using such an estimate implies that nearly 170,000 person visits are
made to Lynford Stag every year32.

                                                          
     31Interestingly this coincides with the Forestry Commission's own working estimate of party size being 3 persons
(Anna Chylak, Forestry Commission, Thetford Forest, pers comm, August 1993).
     32Precise estimate is 169,739 person visits, the majority of which are repeat visits.  On average each visitor visits
14.65 times per year, implying that some 11,586 individual people visit Lynford Stag p.a.
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APPENDIX B: DATA COMPILED FOR META-ANALYSES OF WOODLAND RECREATION VALUE

Table B1: Assembled database of studies providing per person per visit valuation estimates for UK woodland recreation benefits.

Est.
No.

Method Authors of study Author

 (No.)

Study

(No.)

Study forest Forest

(No.)

Value type/

elicit. method

Option
(value type)

Elicit OE (Study
year

value £)

Year

(of study)

Value

(£ 1990)

1 1 Whiteman and
Sinclair (1994)

1 1 Mercia 1 Use/OE 0 1 1 1.00 1992 0.93

2 1 ibid. 1 1 Thames Chase 2 Use/OE 0 1 1 0.71 1992 0.66

3 1 ibid. 1 1 Gt. Northern
Forest

3 Use/OE 0 1 1 0.81 1992 0.75

4 1 Hanley and
Ruffell (1991)

2 2 Aberfoyle 4 Use/OE 0 1 1 0.90 1991 0.85

5 1 ibid. 2 2 Aberfoyle 4 Use/IB 0 2 0 1.21 1991 1.14

6 1 ibid. 2 2 Aberfoyle 4 Use/PC 0 3 0 1.39 1991 1.31

7 1 ibid. 2 2 Aberfoyle 4 Use/DC 0 6 0 1.49 1991 1.41

8 1 Bishop (1992) 3 3 Derwent Walk 5 Use/OE 0 1 1 0.42 1989 0.46

9 1 ibid. 3 3 Derwent Walk 5 use+ option/OE 1 1 1 0.97 1989 1.06

10 1 ibid. 3 3 Whippendell
Wood

6 Use/OE 0 1 1 0.54 1989 0.59

11 1 ibid. 3 3 Whippendell
Wood

6 use+option/OE 1 1 1 1.34 1989 1.46

12 1 Willis and
Benson (1989)

4 4 New Forest 7 Use/OE 0 1 1 0.43 1988 0.47

13 1 ibid. 4 4 Cheshire 8 Use/OE 0 1 1 0.47 1988 0.51

14 1 ibid. 4 4 Loch Awe 9 Use/OE 0 1 1 0.50 1988 0.55

15 1 ibid. 4 4 Brecon 10 Use/OE 0 1 1 0.46 1988 0.50

16 1 ibid. 4 4 Buchan 11 Use/OE 0 1 1 0.57 1988 0.62
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Est.
No.

Method Authors of study Author

 (No.)

Study

(No.)

Study forest Forest

(No.)

Value type/

elicit. method

Option
(value type)

Elicit OE (Study
year

value £)

Year

(of study)

Value

(£ 1990)

17 1 ibid. 4 4 Newton Stewart 12 Use/OE 0 1 1 0.73 1988 0.80

18 1 ibid. 4 4 Lorne 13 Use/OE 0 1 1 0.72 1988 0.79

19 1 ibid. 4 4 Ruthin 14 Use/OE 0 1 1 0.44 1988 0.48

20 1 ibid. 4 4 New Forest 7 use+option/OE 1 1 1 0.88 1988 0.96

21 1 ibid. 4 4 Cheshire 8 use+option/OE 1 1 1 0.72 1988 0.79

22 1 ibid. 4 4 Loch Awe 9 use+option/OE 1 1 1 0.76 1988 0.83

23 1 ibid. 4 4 Brecon 10 use+option/OE 1 1 1 0.66 1988 0.72

24 1 ibid. 4 4 Buchan 11 use+option/OE 1 1 1 0.79 1988 0.86

25 1 ibid. 4 4 Newton Stewart 12 use+option/OE 1 1 1 1.18 1988 1.29

26 1 ibid. 4 4 Lorne 13 use+option/OE 1 1 1 1.02 1988 1.12

27 1 ibid. 4 4 Ruthin 14 use+option/OE 1 1 1 0.63 1988 0.69

28 1 Hanley (1989) 2 5 Aberfoyle 4 Use/OE 0 1 1 1.24 1987 1.53

29 1 ibid. 2 5 Aberfoyle 4 Use/PC 0 3 0 1.25 1987 1.55

30 1 Willis et al
(1988)

4 6 Castle Douglas 15 Use/OE 0 1 1 0.37 1987 0.46

31 1 ibid. 4 6 South Lakes 16 Use/OE 0 1 1 0.39 1987 0.48

32 1 ibid. 4 6 North York
Moors

17 Use/OE 0 1 1 0.53 1987 0.66

33 1 ibid. 4 6 Durham 18 Use/OE 0 1 1 0.31 1987 0.38

34 1 ibid. 4 6 Thetford 19 Use/OE 0 1 1 0.23 1987 0.28

35 1 ibid. 4 6 Dean 20 Use/OE 0 1 1 0.28 1987 0.35

36 1 ibid. 4 6 Castle Douglas 15 use+option/OE 1 1 1 0.80 1987 0.99

37 1 ibid. 4 6 South Lakes 16 use+option/OE 1 1 1 0.86 1987 1.06
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Est.
No.

Method Authors of study Author

 (No.)

Study

(No.)

Study forest Forest

(No.)

Value type/

elicit. method

Option
(value type)

Elicit OE (Study
year

value £)

Year

(of study)

Value

(£ 1990)

38 1 ibid. 4 6 North York
Moors

17 use+option/OE 1 1 1 1.03 1987 1.27

39 1 ibid. 4 6 Durham 18 use+option/OE 1 1 1 0.56 1987 0.69

40 1 ibid. 4 6 Thetford 19 use+option/OE 1 1 1 0.41 1987 0.51

41 1 ibid. 4 6 Dean 20 use+option/OE 1 1 1 0.63 1987 0.78

42 1 Bateman and
Langford
(1997a)2

5 7 Thetford 2

(f2NB)3

19 Use/OE 0 1 1 0.52 1993 0.47

43 1 Bateman (1996) 5 8 Thetford 1 19 Use/PCL 0 4 0 1.21 1990 1.21

44 1 Ibid. 5 8 Thetford 1 19 Use/PCH 0 5 0 1.55 1990 1.55

45 2 Willis and
Garrod (1991)

4 9 Brecon 10 Use 0 -9 -9 1.40 1988 1.65

46 2 Ibid. 4 9 Buchan 11 Use 0 -9 -9 0.50 1988 0.59

47 2 Ibid. 4 9 Cheshire 8 Use 0 -9 -9 0.40 1988 0.47

48 2 Ibid. 4 9 Lorne 13 Use 0 -9 -9 1.53 1988 1.80

49 2 Ibid. 4 9 New Forest 7 Use 0 -9 -9 2.32 1988 2.74

50 2 Ibid. 4 9 Ruthin 14 Use 0 -9 -9 1.29 1988 1.52

51 3 Ibid. 4 9 Brecon 10 Use 0 -9 -9 0.66 1988 0.78

52 3 Ibid. 4 9 Buchan 11 Use 0 -9 -9 0.20 1988 0.24

53 3 Ibid. 4 9 Cheshire 8 Use 0 -9 -9 0.06 1988 0.07

54 3 Ibid. 4 9 Lorne 13 Use 0 -9 -9 0.96 1988 1.13

55 3 Ibid. 4 9 New Forest 7 Use 0 -9 -9 0.12 1988 0.14

56 3 ibid. 4 9 Ruthin 14 Use 0 -9 -9 0.88 1988 1.03

57 3 Bateman (1996) 5 10 Thetford 22 19 Use 0 -9 -9 1.32 1993 1.20
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Est.
No.

Method Authors of study Author

 (No.)

Study

(No.)

Study forest Forest

(No.)

Value type/

elicit. method

Option
(value type)

Elicit OE (Study
year

value £)

Year

(of study)

Value

(£ 1990)

58 2 Bateman (1996) 5 11 Thetford 13,4 19 Use 0 -9 -9 1.07 1990 1.07

59 2 Ibid. 5 11 Thetford 13,5 19 Use 0 -9 -9 1.19 1990 1.40

60 2 Ibid. 5 11 Thetford 13,6 19 Use 0 -9 -9 1.34 1990 1.58

61 4 Benson and
Willis (1992)

4 12 New Forest 7 Use 0 -9 -9 1.43 1988 1.69

62 4 ibid. 4 12 Cheshire 8 Use 0 -9 -9 1.91 1988 2.26

63 4 ibid. 4 12 Loch Awe 9 Use 0 -9 -9 3.31 1988 3.91

64 4 ibid. 4 12 Brecon 10 Use 0 -9 -9 2.60 1988 3.07

65 4 ibid. 4 12 Buchan 11 Use 0 -9 -9 2.26 1988 2.67

66 4 ibid. 4 12 Durham 18 Use 0 -9 -9 1.64 1988 1.94

67 4 ibid. 4 12 N York Moors 17 Use 0 -9 -9 1.93 1988 2.28

68 4 ibid. 4 12 Aberfoyle 4 Use 0 -9 -9 2.72 1988 3.21

69 4 ibid. 4 12 South Lakes 16 Use 0 -9 -9 1.34 1988 1.58

70 4 ibid. 4 12 Newton Stewart 12 Use 0 -9 -9 1.61 1988 1.90

71 4 ibid. 4 12 Lorne 13 Use 0 -9 -9 1.44 1988 1.70

72 4 ibid. 4 12 Castle Douglas 15 Use 0 -9 -9 2.41 1988 2.85

73 4 ibid. 4 12 Ruthin 14 Use 0 -9 -9 2.52 1988 2.98

74 4 ibid. 4 12 Dean 20 Use 0 -9 -9 2.34 1988 2.76

75 4 ibid. 4 12 Thetford 19 Use 0 -9 -9 2.66 1988 3.14

76 4 Hanley (1989) 2 13 Aberfoyle 4 Use 0 -9 -9 1.70 1987 2.14

77 4 Everett (1979) 6 14 Dalby 21 Use 0 -9 -9 0.41 1976 1.30
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Variable coding for Table B1 is as follows (all variable values were re-coded to individual
dummies for the regression analysis):

Method (valuation method):

1 = CV
2 = individual TC (OLS estimator used)
3 = individual TC (ML estimator used)
4 = zonal TC

Author

1= Whiteman and Sinclair
2 = Hanley et al.
3 = Bishop
4 = Willis et al.
5 = Bateman et al.
6 = Everett

Option

1 = use value plus option value explicitly requested in WTP question
0 = use value

Elicit
WTP elicitation methods are as follows:
1= open ended (OE)
2 = iterative bidding (IB)
3 = payment card (PC), only one range used in study
4 = low range payment card (PCL)
5 = high range payment card (PCH)
6 = dichotomous choice (DC)

OE

1= open ended elicitation method used
0 = other
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Investigating the size of forest effects in the conventional meta-analysis model

The GLM estimated model detailed below includes estimated coefficients for each of the
forests studied in the dataset. Note that in this model the author variable Hanley becomes
insignificant. This is due to very high colinearity with the Aberfoyle site (Forest number 4)
with 7 of the 8 studies conducted at this site being undertaken by Nick Hanley.

Analysis of Variance for Value, using Adjusted SS for Tests

Source     DF     Seq SS     Adj SS     Adj MS       F      P
ZTC         1    31.0209    30.6757    30.6757  127.94  0.000
ITCols      1     2.8698     3.6617     3.6617   15.27  0.000
Year1990    1     1.4840     0.0895     0.0895    0.37  0.544
Option      1     0.8683     0.9549     0.9549    3.98  0.051
Hanley      1     1.1742     0.0681     0.0681    0.28  0.596
Forest     20     3.1926     3.1926     0.1596    0.67  0.840
Error      51    12.2281    12.2281     0.2398
Total      76    52.8379
R2 = 0.768

Term          Coef     StDev        T      P
Constant    2.0064    0.3181     6.31  0.000
ZTC         0.90282   0.07982   11.31  0.000
ITCols      0.38088   0.09746    3.91  0.000
Year1990    0.03625   0.05933    0.61  0.544
Option      0.16016   0.08026    2.00  0.051
Hanley     -0.1452    0.2724    -0.53  0.596
Forest
 1          0.1498    0.5273     0.28  0.777
 2         -0.1202    0.5273    -0.23  0.821
 3         -0.0302    0.5273    -0.06  0.955
 4          0.7692    0.4834     1.59  0.118
 5         -0.0716    0.3466    -0.21  0.837
 6          0.1934    0.3466     0.56  0.579
 7         -0.0127    0.2219    -0.06  0.955
 8         -0.3927    0.2219    -1.77  0.083
 9          0.4195    0.2795     1.50  0.140
10          0.1313    0.2219     0.59  0.557
11         -0.2167    0.2219    -0.98  0.333
12         -0.0138    0.2795    -0.05  0.961
13          0.0953    0.2219     0.43  0.669
14          0.1273    0.2219     0.57  0.569
15          0.1137    0.2819     0.40  0.688
16         -0.2797    0.2819    -0.99  0.326
17          0.0837    0.2819     0.30  0.768
18         -0.3163    0.2819    -1.12  0.267
19          0.0995    0.1988     0.50  0.619
20         -0.0230    0.2819    -0.08  0.935

Forest numbers are as per Table B1
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Stability of the best fit conventional meta-analysis model

Stepwise forward entry regression models were drawn from 13 potential predictors of
woodland recreation value. Stability of coefficient estimates across steps (and standard
diagnostics) suggests that multicollinearity is not a significant problem here. The final step (7)
gives us the Model G from Table 5 of Part Two of this report.

    Step         1        2        3        4        5        6        7
Constant    0.9038   0.8120   0.9162   0.9390   0.8671   0.7860   0.7697

ZTC           1.53     1.62     1.72     1.71     1.82     1.86     1.85
T-Value      10.33    11.45    12.08    12.31    12.40    12.91    12.94

ITCols                 0.61     0.60     0.63     0.72     0.79     0.80
T-Value                3.35     3.42     3.61     4.07     4.51     4.63

Year1990                       0.072    0.069    0.082    0.076    0.075
T-Value                         2.49     2.45     2.89     2.72     2.74

Cheshire                                -0.45    -0.45    -0.41    -0.40
T-Value                                 -2.02    -2.05    -1.94    -1.88

Option                                            0.29     0.35     0.34
T-Value                                           1.98     2.44     2.38

Hanley                                                     0.42     0.44
T-Value                                                    2.22     2.33

Loch_Awe                                                            0.42
T-Value                                                             1.54

S            0.539    0.506    0.489    0.479    0.470    0.457    0.453
R-Sq         58.71    64.14    66.95    68.72    70.36    72.31    73.24

We can re-estimate Model G excluding the Loch Awe variable to yield the following model:

Predictor        Coef       StDev          T        P
Constant      0.78597     0.09125       8.61    0.000
Option         0.3529      0.1446       2.44    0.017
Cheshire      -0.4135      0.2127      -1.94    0.056
Year1990      0.07580     0.02785       2.72    0.008
Hanley         0.4214      0.1896       2.22    0.029
ZTC            1.8572      0.1439      12.91    0.000
ITCols         0.7855      0.1741       4.51    0.000

R-Sq = 72.3%     R-Sq(adj.) = 69.9%

As can be seen, omission of the Loch Awe variable makes no substantive difference to this
model.
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